User talk:PaoloMartini

From HaskellWiki

p(x)=i=0naixi,an0

p(x)=anxn+i=0n1aixi

p(x1)=an(x1)n+i=0n1ai(x1)i

(x1)n=k=0n(nk)xnk(1)k

p(x1)=ank=0n(nk)xnk(1)k+i=0n1ai(x1)i

p(x1)=anxn+ank=1n(nk)xnk(1)k+i=0n1ai(x1)i

{-# OPTIONS_GHC -fglasgow-exts #-}
module Polynomial where

import Test.QuickCheck

-- *f*actorial
f :: Integer -> Integer
f n = product [1..n]

-- *c*hoose -- binomial coefficient
c :: Integer -> Integer -> Integer
n `c` k = f n `div` (f k * f (n-k))

-- *p*olynomial
p, q :: [Integer] -> Integer -> Integer
p a x = sum [(a!!fromIntegral i)*(x^i) | i <- [0..n]] where n = length a - 1

q a x = ((a!!n) * ((x+1)^n))
      + ((a!!n) * sum [(fromIntegral n `c` fromIntegral k)*((x+1)^(n-k))*((-1)^k) | k <- [1..n]])
      + sum [(a!!fromIntegral i)*(x^i) | i <- [0..n-1]] where n = length a - 1

-- *t*est
t = quickCheck $ \(x::Integer) (xs::[Integer]) ->
      not (null xs) && last xs /= 0  ==>  p xs x == q xs x