Euler problems/141 to 150: Difference between revisions
No edit summary |
No edit summary |
||
Line 136: | Line 136: | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_146 = | import List | ||
find2km :: Integral a => a -> (a,a) | |||
find2km n = f 0 n | |||
where | |||
f k m | |||
| r == 1 = (k,m) | |||
| otherwise = f (k+1) q | |||
where (q,r) = quotRem m 2 | |||
millerRabinPrimality :: Integer -> Integer -> Bool | |||
millerRabinPrimality n a | |||
| a <= 1 || a >= n-1 = | |||
error $ "millerRabinPrimality: a out of range (" | |||
++ show a ++ " for "++ show n ++ ")" | |||
| n < 2 = False | |||
| even n = False | |||
| b0 == 1 || b0 == n' = True | |||
| otherwise = iter (tail b) | |||
where | |||
n' = n-1 | |||
(k,m) = find2km n' | |||
b0 = powMod n a m | |||
b = take (fromIntegral k) $ iterate (squareMod n) b0 | |||
iter [] = False | |||
iter (x:xs) | |||
| x == 1 = False | |||
| x == n' = True | |||
| otherwise = iter xs | |||
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a | |||
pow' _ _ _ 0 = 1 | |||
pow' mul sq x' n' = f x' n' 1 | |||
where | |||
f x n y | |||
| n == 1 = x `mul` y | |||
| r == 0 = f x2 q y | |||
| otherwise = f x2 q (x `mul` y) | |||
where | |||
(q,r) = quotRem n 2 | |||
x2 = sq x | |||
mulMod :: Integral a => a -> a -> a -> a | |||
mulMod a b c = (b * c) `mod` a | |||
squareMod :: Integral a => a -> a -> a | |||
squareMod a b = (b * b) `rem` a | |||
powMod :: Integral a => a -> a -> a -> a | |||
powMod m = pow' (mulMod m) (squareMod m) | |||
isPrime x=millerRabinPrimality x 2 | |||
--isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]] | |||
six=[1,3,7,9,13,27] | |||
allPrime x=foldl (&&) True [isPrime k|a<-six,let k=x^2+a] | |||
linkPrime [x]=filterPrime x | |||
linkPrime (x:xs)=[y| | |||
a<-linkPrime xs, | |||
b<-[0..(x-1)], | |||
let y=b*prxs+a, | |||
let c=mod y x, | |||
elem c d] | |||
where | |||
prxs=product xs | |||
d=filterPrime x | |||
filterPrime p=[a|a<-[0..(p-1)],length[b|b<-six,mod (a^2+b) p/=0]==6] | |||
testPrimes=[2,3,5,7,11,13,17,23] | |||
primes=[2,3,5,7,11,13,17,23,29] | |||
test =sum[y|y<-linkPrime testPrimes,y<1000000,allPrime (y)]==1242490 | |||
p146 =[y|y<-linkPrime primes,y<150000000,allPrime (y)] | |||
problem_146=[a|a<-p146, allNext a] | |||
allNext x= | |||
sum [1|(x,y)<-zip a b,x==y]==6 | |||
where | |||
a=[x^2+b|b<-six] | |||
b=head a:(map nextPrime a) | |||
nextPrime x=head [a|a<-[(x+1)..],isPrime a] | |||
main=writeFile "p146.log" $show $sum problem_146 | |||
</haskell> | </haskell> | ||
Revision as of 08:49, 23 December 2007
Problem 141
Investigating progressive numbers, n, which are also square.
Solution:
problem_141 = undefined
Problem 142
Perfect Square Collection
Solution:
import List
isSquare n = (round . sqrt $ fromIntegral n) ^ 2 == n
aToX (a,b,c)=[x,y,z]
where
x=div (a+b) 2
y=div (a-b) 2
z=c-x
{-
- 2 2 2
- a = c + d
- 2 2 2
- a = e + f
- 2 2 2
- c = e + b
- let b=x*y then
- (y + xb)
- c= ---------
- 2
- (-y + xb)
- e= ---------
- 2
- (-x + yb)
- d= ---------
- 2
- (x + yb)
- f= ---------
- 2
-
- and
- 2 2 2
- a = c + d
- then
- 2 2 2 2
- 2 (y + x ) (x y + 1)
- a = ---------------------
- 4
-
-}
problem_142 = sum$head[aToX(t,t2 ,t3)|
a<-[3,5..50],
b<-[(a+2),(a+4)..50],
let a2=a^2,
let b2=b^2,
let n=(a2+b2)*(a2*b2+1),
isSquare n,
let t=div n 4,
let t2=a2*b2,
let t3=div (a2*(b2+1)^2) 4
]
Problem 143
Investigating the Torricelli point of a triangle
Solution:
problem_143 = undefined
Problem 144
Investigating multiple reflections of a laser beam.
Solution:
problem_144 = undefined
Problem 145
How many reversible numbers are there below one-billion?
Solution:
import List
digits n
{- 123->[3,2,1]
-}
|n<10=[n]
|otherwise= y:digits x
where
(x,y)=divMod n 10
-- 123 ->321
dmm=(\x y->x*10+y)
palind n=foldl dmm 0 (digits n)
isOdd x=(length$takeWhile odd x)==(length x)
isOdig x=isOdd m && s<=h
where
k=x+palind x
m=digits k
y=floor$logBase 10 $fromInteger x
ten=10^y
s=mod x 10
h=div x ten
a2=[i|i<-[10..99],isOdig i]
aa2=[i|i<-[10..99],isOdig i,mod i 10/=0]
a3=[i|i<-[100..999],isOdig i]
m5=[i|i1<-[0..99],i2<-[0..99],
let i3=i1*1000+3*100+i2,
let i=10^6* 8+i3*10+5,
isOdig i
]
fun i
|i==2 =2*le aa2
|even i=(fun 2)*d^(m-1)
|i==3 =2*le a3
|i==7 =fun 3*le m5
|otherwise=0
where
le=length
m=div i 2
d=2*le a2
problem_145 = sum[fun a|a<-[1..9]]
Problem 146
Investigating a Prime Pattern
Solution:
import List
find2km :: Integral a => a -> (a,a)
find2km n = f 0 n
where
f k m
| r == 1 = (k,m)
| otherwise = f (k+1) q
where (q,r) = quotRem m 2
millerRabinPrimality :: Integer -> Integer -> Bool
millerRabinPrimality n a
| a <= 1 || a >= n-1 =
error $ "millerRabinPrimality: a out of range ("
++ show a ++ " for "++ show n ++ ")"
| n < 2 = False
| even n = False
| b0 == 1 || b0 == n' = True
| otherwise = iter (tail b)
where
n' = n-1
(k,m) = find2km n'
b0 = powMod n a m
b = take (fromIntegral k) $ iterate (squareMod n) b0
iter [] = False
iter (x:xs)
| x == 1 = False
| x == n' = True
| otherwise = iter xs
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a
pow' _ _ _ 0 = 1
pow' mul sq x' n' = f x' n' 1
where
f x n y
| n == 1 = x `mul` y
| r == 0 = f x2 q y
| otherwise = f x2 q (x `mul` y)
where
(q,r) = quotRem n 2
x2 = sq x
mulMod :: Integral a => a -> a -> a -> a
mulMod a b c = (b * c) `mod` a
squareMod :: Integral a => a -> a -> a
squareMod a b = (b * b) `rem` a
powMod :: Integral a => a -> a -> a -> a
powMod m = pow' (mulMod m) (squareMod m)
isPrime x=millerRabinPrimality x 2
--isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]]
six=[1,3,7,9,13,27]
allPrime x=foldl (&&) True [isPrime k|a<-six,let k=x^2+a]
linkPrime [x]=filterPrime x
linkPrime (x:xs)=[y|
a<-linkPrime xs,
b<-[0..(x-1)],
let y=b*prxs+a,
let c=mod y x,
elem c d]
where
prxs=product xs
d=filterPrime x
filterPrime p=[a|a<-[0..(p-1)],length[b|b<-six,mod (a^2+b) p/=0]==6]
testPrimes=[2,3,5,7,11,13,17,23]
primes=[2,3,5,7,11,13,17,23,29]
test =sum[y|y<-linkPrime testPrimes,y<1000000,allPrime (y)]==1242490
p146 =[y|y<-linkPrime primes,y<150000000,allPrime (y)]
problem_146=[a|a<-p146, allNext a]
allNext x=
sum [1|(x,y)<-zip a b,x==y]==6
where
a=[x^2+b|b<-six]
b=head a:(map nextPrime a)
nextPrime x=head [a|a<-[(x+1)..],isPrime a]
main=writeFile "p146.log" $show $sum problem_146
Problem 147
Rectangles in cross-hatched grids
Solution:
problem_147 = undefined
Problem 148
Exploring Pascal's triangle.
Solution:
import List
digits n
{- 123->[3,2,1]
- -}
|n<7=[n]
|otherwise= y:digits x
where
(x,y)=divMod n 7
notDivX x=product$map (+1) $digits x
array::[Integer]
array=[a*b*c*d*e*f|let t=[1..7],a<-t,b<-t,c<-t,d<-t,e<-t,f<-t]
fastNotDivX::Integer->Integer
fastNotDivX x=sum[k*a|a<-array]
where
k=product$map (+1) $digits x
sumNotDivX x=sum[notDivX a|a<-[0..x]]
-- sum[fastNotDivX x|x<-[0..b]]=sumNotDivX ((b+1)*7^6-1)
moreNotDivX =sum[notDivX a|a<-[1000000000.. 1000016499 ]]
google num
-- write file to change bignum to small num
=if (num>8499)
then return()
else do appendFile "file.log" $(show$fastNotDivX num) ++" "++(show num) ++"\n"
google (num+1)
-- first use main to make file.log
-- then run problem_148
main=google 0
split :: Char -> String -> [String]
split = unfoldr . split'
split' :: Char -> String -> Maybe (String, String)
split' c l
| null l = Nothing
| otherwise = Just (h, drop 1 t)
where (h, t) = span (/=c) l
sToInt x=((+0).read) $head$split ' ' x
problem_148=do
x<-readFile "file.log"
let y=sum$map sToInt $lines x
print ( y-(fromInteger moreNotDivX))
Problem 149
Searching for a maximum-sum subsequence.
Solution:
problem_149 = undefined
Problem 150
Searching a triangular array for a sub-triangle having minimum-sum.
Solution:
problem_150 = undefined