Euler problems/141 to 150: Difference between revisions
Marypoppins (talk | contribs) No edit summary |
CaleGibbard (talk | contribs) (rv: vandalism) |
||
Line 1: | Line 1: | ||
== [http://projecteuler.net/index.php?section=view&id=141 Problem 141] == | |||
Investigating progressive numbers, n, which are also square. | |||
Solution: | |||
<haskell> | |||
import Data.List | |||
intSqrt :: Integral a => a -> a | |||
intSqrt n | |||
| n < 0 = error "intSqrt: negative n" | |||
| otherwise = f n | |||
where | |||
f x = if y < x then f y else x | |||
where y = (x + (n `quot` x)) `quot` 2 | |||
isSqrt n = n==((^2).intSqrt) n | |||
takec a b = | |||
two++takeWhile (<=e12) | |||
[sq| c1<-[1..], let c=c1*c1,let sq=(c^2*a^3*b+b^2*c) ] | |||
where | |||
e12=10^12 | |||
two=[sq|c<-[b,2*b],let sq=(c^2*a^3*b+b^2*c) ] | |||
problem_141= | |||
sum$nub[c| | |||
(a,b)<-takeWhile (\(a,b)->a^3*b+b^2<e12) | |||
[(a,b)| | |||
a<-[2..e4], | |||
b<-[1..(a-1)] | |||
], | |||
gcd a b==1, | |||
c<-takec a b, | |||
isSqrt c | |||
] | |||
where | |||
e4=120 | |||
e12=10^12 | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=142 Problem 142] == | |||
Perfect Square Collection | |||
Solution: | |||
<haskell> | |||
import List | |||
isSquare n = (round . sqrt $ fromIntegral n) ^ 2 == n | |||
aToX (a,b,c)=[x,y,z] | |||
where | |||
x=div (a+b) 2 | |||
y=div (a-b) 2 | |||
z=c-x | |||
{- | |||
- 2 2 2 | |||
- a = c + d | |||
- 2 2 2 | |||
- a = e + f | |||
- 2 2 2 | |||
- c = e + b | |||
- let b=x*y then | |||
- (y + xb) | |||
- c= --------- | |||
- 2 | |||
- (-y + xb) | |||
- e= --------- | |||
- 2 | |||
- (-x + yb) | |||
- d= --------- | |||
- 2 | |||
- (x + yb) | |||
- f= --------- | |||
- 2 | |||
- | |||
- and | |||
- 2 2 2 | |||
- a = c + d | |||
- then | |||
- 2 2 2 2 | |||
- 2 (y + x ) (x y + 1) | |||
- a = --------------------- | |||
- 4 | |||
- | |||
-} | |||
problem_142 = sum$head[aToX(t,t2 ,t3)| | |||
a<-[3,5..50], | |||
b<-[(a+2),(a+4)..50], | |||
let a2=a^2, | |||
let b2=b^2, | |||
let n=(a2+b2)*(a2*b2+1), | |||
isSquare n, | |||
let t=div n 4, | |||
let t2=a2*b2, | |||
let t3=div (a2*(b2+1)^2) 4 | |||
] | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=143 Problem 143] == | |||
Investigating the Torricelli point of a triangle | |||
Solution: | |||
<haskell> | |||
import Data.List | |||
import Data.Array.ST | |||
import Data.Array | |||
import qualified Data.Array.Unboxed as U | |||
import Control.Monad | |||
mkCan :: [Int] -> [(Int,Int)] | |||
mkCan lst = map func $ group $ insert 3 lst | |||
where | |||
func ps@(p:_) | |||
| p == 3 = (3,2*l-1) | |||
| otherwise = (p, 2*l) | |||
where | |||
l = length ps | |||
spfArray :: U.UArray Int Int | |||
spfArray | |||
= runSTUArray | |||
(do ar <- newArray (2,13397) 0 | |||
let loop k | |||
| k > 13397 = return () | |||
| otherwise = do writeArray ar k 2 | |||
loop (k+2) | |||
loop 2 | |||
let go i | |||
| i > 13397 = return ar | |||
| otherwise | |||
= do p <- readArray ar i | |||
if (p == 0) | |||
then do writeArray ar i i | |||
let run k | |||
| k > 13397 = go (i+2) | |||
| otherwise | |||
= do q <- readArray ar k | |||
when (q == 0) | |||
(writeArray ar k i) | |||
run (k+2*i) | |||
run (i*i) | |||
else go (i+2) | |||
go 3) | |||
factArray :: Array Int [Int] | |||
factArray | |||
= runSTArray | |||
(do ar <- newArray (1,13397) [] | |||
let go i | |||
| i > 13397 = return ar | |||
| otherwise = do let p = spfArray U.! i | |||
q = i `div` p | |||
fs <- readArray ar q | |||
writeArray ar i (p:fs) | |||
go (i+1) | |||
go 2) | |||
sdivs :: Int -> [(Int,Int)] | |||
sdivs s | |||
= filter ((<= 100000) . uncurry (+)) $ zip sds' lds' | |||
where | |||
bd = 3*s*s | |||
pks = mkCan $ factArray ! s | |||
fun (p,k) = take (k+1) $ iterate (*p) 1 | |||
ds = map fun pks | |||
(sds,lds) = span ((< bd) . (^2)) . sort $ foldr (liftM2 (*)) [1] ds | |||
sds' = map (+ 2*s) sds | |||
lds' = reverse $ map (+ 2*s) lds | |||
pairArray :: Array Int [Int] | |||
pairArray | |||
= runSTArray | |||
(do ar <- newArray (3,50000) [] | |||
let go s | |||
| s > 13397 = return ar | |||
| otherwise | |||
= do let run [] = go (s+1) | |||
run ((r,q):ds) | |||
= do lst <- readArray ar r | |||
let nlst = insert q lst | |||
writeArray ar r nlst | |||
run ds | |||
run $ sdivs s | |||
go 1) | |||
select2 :: [Int] -> [(Int,Int)] | |||
select2 [] = [] | |||
select2 (a:bs) = [(a,b) | b <- bs] ++ select2 bs | |||
sumArray :: U.UArray Int Bool | |||
sumArray | |||
= runSTUArray | |||
(do ar <- newArray (12,100000) False | |||
let go r | |||
| r > 33332 = return ar | |||
| otherwise | |||
= do let run [] = go (r+1) | |||
run ((q,p):xs) | |||
= do when (p `elem` (pairArray!q)) | |||
(writeArray ar (p+q+r) True) | |||
run xs | |||
run $ filter ((<= 100000) . (+r) . uncurry (+)) $ | |||
select2 $ pairArray!r | |||
go 3) | |||
main :: IO () | |||
main = writeFile "p143.log"$show$ sum [s | (s,True) <- U.assocs sumArray] | |||
problem_143 = main | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=144 Problem 144] == | |||
Investigating multiple reflections of a laser beam. | |||
Solution: | |||
<haskell> | |||
problem_144 = undefined | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=145 Problem 145] == | |||
How many reversible numbers are there below one-billion? | |||
Solution: | |||
<haskell> | |||
import List | |||
digits n | |||
{- 123->[3,2,1] | |||
-} | |||
|n<10=[n] | |||
|otherwise= y:digits x | |||
where | |||
(x,y)=divMod n 10 | |||
-- 123 ->321 | |||
dmm=(\x y->x*10+y) | |||
palind n=foldl dmm 0 (digits n) | |||
isOdd x=(length$takeWhile odd x)==(length x) | |||
isOdig x=isOdd m && s<=h | |||
where | |||
k=x+palind x | |||
m=digits k | |||
y=floor$logBase 10 $fromInteger x | |||
ten=10^y | |||
s=mod x 10 | |||
h=div x ten | |||
a2=[i|i<-[10..99],isOdig i] | |||
aa2=[i|i<-[10..99],isOdig i,mod i 10/=0] | |||
a3=[i|i<-[100..999],isOdig i] | |||
m5=[i|i1<-[0..99],i2<-[0..99], | |||
let i3=i1*1000+3*100+i2, | |||
let i=10^6* 8+i3*10+5, | |||
isOdig i | |||
] | |||
fun i | |||
|i==2 =2*le aa2 | |||
|even i=(fun 2)*d^(m-1) | |||
|i==3 =2*le a3 | |||
|i==7 =fun 3*le m5 | |||
|otherwise=0 | |||
where | |||
le=length | |||
m=div i 2 | |||
d=2*le a2 | |||
problem_145 = sum[fun a|a<-[1..9]] | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=146 Problem 146] == | |||
Investigating a Prime Pattern | |||
Solution: | |||
<haskell> | |||
import List | |||
find2km :: Integral a => a -> (a,a) | |||
find2km n = f 0 n | |||
where | |||
f k m | |||
| r == 1 = (k,m) | |||
| otherwise = f (k+1) q | |||
where (q,r) = quotRem m 2 | |||
millerRabinPrimality :: Integer -> Integer -> Bool | |||
millerRabinPrimality n a | |||
| a <= 1 || a >= n-1 = | |||
error $ "millerRabinPrimality: a out of range (" | |||
++ show a ++ " for "++ show n ++ ")" | |||
| n < 2 = False | |||
| even n = False | |||
| b0 == 1 || b0 == n' = True | |||
| otherwise = iter (tail b) | |||
where | |||
n' = n-1 | |||
(k,m) = find2km n' | |||
b0 = powMod n a m | |||
b = take (fromIntegral k) $ iterate (squareMod n) b0 | |||
iter [] = False | |||
iter (x:xs) | |||
| x == 1 = False | |||
| x == n' = True | |||
| otherwise = iter xs | |||
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a | |||
pow' _ _ _ 0 = 1 | |||
pow' mul sq x' n' = f x' n' 1 | |||
where | |||
f x n y | |||
| n == 1 = x `mul` y | |||
| r == 0 = f x2 q y | |||
| otherwise = f x2 q (x `mul` y) | |||
where | |||
(q,r) = quotRem n 2 | |||
x2 = sq x | |||
mulMod :: Integral a => a -> a -> a -> a | |||
mulMod a b c = (b * c) `mod` a | |||
squareMod :: Integral a => a -> a -> a | |||
squareMod a b = (b * b) `rem` a | |||
powMod :: Integral a => a -> a -> a -> a | |||
powMod m = pow' (mulMod m) (squareMod m) | |||
isPrime x=millerRabinPrimality x 2 | |||
--isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]] | |||
six=[1,3,7,9,13,27] | |||
allPrime x=foldl (&&) True [isPrime k|a<-six,let k=x^2+a] | |||
linkPrime [x]=filterPrime x | |||
linkPrime (x:xs)=[y| | |||
a<-linkPrime xs, | |||
b<-[0..(x-1)], | |||
let y=b*prxs+a, | |||
let c=mod y x, | |||
elem c d] | |||
where | |||
prxs=product xs | |||
d=filterPrime x | |||
filterPrime p= | |||
[a| | |||
a<-[0..(p-1)], | |||
length[b|b<-six,mod (a^2+b) p/=0]==6 | |||
] | |||
testPrimes=[2,3,5,7,11,13,17,23] | |||
primes=[2,3,5,7,11,13,17,23,29] | |||
test = | |||
sum[y| | |||
y<-linkPrime testPrimes, | |||
y<1000000, | |||
allPrime (y) | |||
]==1242490 | |||
p146 =[y|y<-linkPrime primes,y<150000000,allPrime (y)] | |||
problem_146=[a|a<-p146, allNext a] | |||
allNext x= | |||
sum [1|(x,y)<-zip a b,x==y]==6 | |||
where | |||
a=[x^2+b|b<-six] | |||
b=head a:(map nextPrime a) | |||
nextPrime x=head [a|a<-[(x+1)..],isPrime a] | |||
main=writeFile "p146.log" $show $sum problem_146 | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=147 Problem 147] == | |||
Rectangles in cross-hatched grids | |||
Solution: | |||
<haskell> | |||
problem_147 = undefined | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=148 Problem 148] == | |||
Exploring Pascal's triangle. | |||
Solution: | |||
<haskell> | |||
triangel 0 = 0 | |||
triangel n | |||
|n <7 =n+triangel (n-1) | |||
|n==k7 =28^k | |||
|otherwise=(triangel i) + j*(triangel (n-i)) | |||
where | |||
i=k7*((n-1)`div`k7) | |||
j= -(n`div`(-k7)) | |||
k7=7^k | |||
k=floor(log (fromIntegral n)/log 7) | |||
problem_148=triangel (10^9) | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=149 Problem 149] == | |||
Searching for a maximum-sum subsequence. | |||
Solution: | |||
<haskell> | |||
problem_149 = undefined | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=view&id=150 Problem 150] == | |||
Searching a triangular array for a sub-triangle having minimum-sum. | |||
Solution: | |||
<haskell> | |||
problem_150 = undefined | |||
</haskell> |
Revision as of 04:59, 30 January 2008
Problem 141
Investigating progressive numbers, n, which are also square.
Solution:
import Data.List
intSqrt :: Integral a => a -> a
intSqrt n
| n < 0 = error "intSqrt: negative n"
| otherwise = f n
where
f x = if y < x then f y else x
where y = (x + (n `quot` x)) `quot` 2
isSqrt n = n==((^2).intSqrt) n
takec a b =
two++takeWhile (<=e12)
[sq| c1<-[1..], let c=c1*c1,let sq=(c^2*a^3*b+b^2*c) ]
where
e12=10^12
two=[sq|c<-[b,2*b],let sq=(c^2*a^3*b+b^2*c) ]
problem_141=
sum$nub[c|
(a,b)<-takeWhile (\(a,b)->a^3*b+b^2<e12)
[(a,b)|
a<-[2..e4],
b<-[1..(a-1)]
],
gcd a b==1,
c<-takec a b,
isSqrt c
]
where
e4=120
e12=10^12
Problem 142
Perfect Square Collection
Solution:
import List
isSquare n = (round . sqrt $ fromIntegral n) ^ 2 == n
aToX (a,b,c)=[x,y,z]
where
x=div (a+b) 2
y=div (a-b) 2
z=c-x
{-
- 2 2 2
- a = c + d
- 2 2 2
- a = e + f
- 2 2 2
- c = e + b
- let b=x*y then
- (y + xb)
- c= ---------
- 2
- (-y + xb)
- e= ---------
- 2
- (-x + yb)
- d= ---------
- 2
- (x + yb)
- f= ---------
- 2
-
- and
- 2 2 2
- a = c + d
- then
- 2 2 2 2
- 2 (y + x ) (x y + 1)
- a = ---------------------
- 4
-
-}
problem_142 = sum$head[aToX(t,t2 ,t3)|
a<-[3,5..50],
b<-[(a+2),(a+4)..50],
let a2=a^2,
let b2=b^2,
let n=(a2+b2)*(a2*b2+1),
isSquare n,
let t=div n 4,
let t2=a2*b2,
let t3=div (a2*(b2+1)^2) 4
]
Problem 143
Investigating the Torricelli point of a triangle
Solution:
import Data.List
import Data.Array.ST
import Data.Array
import qualified Data.Array.Unboxed as U
import Control.Monad
mkCan :: [Int] -> [(Int,Int)]
mkCan lst = map func $ group $ insert 3 lst
where
func ps@(p:_)
| p == 3 = (3,2*l-1)
| otherwise = (p, 2*l)
where
l = length ps
spfArray :: U.UArray Int Int
spfArray
= runSTUArray
(do ar <- newArray (2,13397) 0
let loop k
| k > 13397 = return ()
| otherwise = do writeArray ar k 2
loop (k+2)
loop 2
let go i
| i > 13397 = return ar
| otherwise
= do p <- readArray ar i
if (p == 0)
then do writeArray ar i i
let run k
| k > 13397 = go (i+2)
| otherwise
= do q <- readArray ar k
when (q == 0)
(writeArray ar k i)
run (k+2*i)
run (i*i)
else go (i+2)
go 3)
factArray :: Array Int [Int]
factArray
= runSTArray
(do ar <- newArray (1,13397) []
let go i
| i > 13397 = return ar
| otherwise = do let p = spfArray U.! i
q = i `div` p
fs <- readArray ar q
writeArray ar i (p:fs)
go (i+1)
go 2)
sdivs :: Int -> [(Int,Int)]
sdivs s
= filter ((<= 100000) . uncurry (+)) $ zip sds' lds'
where
bd = 3*s*s
pks = mkCan $ factArray ! s
fun (p,k) = take (k+1) $ iterate (*p) 1
ds = map fun pks
(sds,lds) = span ((< bd) . (^2)) . sort $ foldr (liftM2 (*)) [1] ds
sds' = map (+ 2*s) sds
lds' = reverse $ map (+ 2*s) lds
pairArray :: Array Int [Int]
pairArray
= runSTArray
(do ar <- newArray (3,50000) []
let go s
| s > 13397 = return ar
| otherwise
= do let run [] = go (s+1)
run ((r,q):ds)
= do lst <- readArray ar r
let nlst = insert q lst
writeArray ar r nlst
run ds
run $ sdivs s
go 1)
select2 :: [Int] -> [(Int,Int)]
select2 [] = []
select2 (a:bs) = [(a,b) | b <- bs] ++ select2 bs
sumArray :: U.UArray Int Bool
sumArray
= runSTUArray
(do ar <- newArray (12,100000) False
let go r
| r > 33332 = return ar
| otherwise
= do let run [] = go (r+1)
run ((q,p):xs)
= do when (p `elem` (pairArray!q))
(writeArray ar (p+q+r) True)
run xs
run $ filter ((<= 100000) . (+r) . uncurry (+)) $
select2 $ pairArray!r
go 3)
main :: IO ()
main = writeFile "p143.log"$show$ sum [s | (s,True) <- U.assocs sumArray]
problem_143 = main
Problem 144
Investigating multiple reflections of a laser beam.
Solution:
problem_144 = undefined
Problem 145
How many reversible numbers are there below one-billion?
Solution:
import List
digits n
{- 123->[3,2,1]
-}
|n<10=[n]
|otherwise= y:digits x
where
(x,y)=divMod n 10
-- 123 ->321
dmm=(\x y->x*10+y)
palind n=foldl dmm 0 (digits n)
isOdd x=(length$takeWhile odd x)==(length x)
isOdig x=isOdd m && s<=h
where
k=x+palind x
m=digits k
y=floor$logBase 10 $fromInteger x
ten=10^y
s=mod x 10
h=div x ten
a2=[i|i<-[10..99],isOdig i]
aa2=[i|i<-[10..99],isOdig i,mod i 10/=0]
a3=[i|i<-[100..999],isOdig i]
m5=[i|i1<-[0..99],i2<-[0..99],
let i3=i1*1000+3*100+i2,
let i=10^6* 8+i3*10+5,
isOdig i
]
fun i
|i==2 =2*le aa2
|even i=(fun 2)*d^(m-1)
|i==3 =2*le a3
|i==7 =fun 3*le m5
|otherwise=0
where
le=length
m=div i 2
d=2*le a2
problem_145 = sum[fun a|a<-[1..9]]
Problem 146
Investigating a Prime Pattern
Solution:
import List
find2km :: Integral a => a -> (a,a)
find2km n = f 0 n
where
f k m
| r == 1 = (k,m)
| otherwise = f (k+1) q
where (q,r) = quotRem m 2
millerRabinPrimality :: Integer -> Integer -> Bool
millerRabinPrimality n a
| a <= 1 || a >= n-1 =
error $ "millerRabinPrimality: a out of range ("
++ show a ++ " for "++ show n ++ ")"
| n < 2 = False
| even n = False
| b0 == 1 || b0 == n' = True
| otherwise = iter (tail b)
where
n' = n-1
(k,m) = find2km n'
b0 = powMod n a m
b = take (fromIntegral k) $ iterate (squareMod n) b0
iter [] = False
iter (x:xs)
| x == 1 = False
| x == n' = True
| otherwise = iter xs
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a
pow' _ _ _ 0 = 1
pow' mul sq x' n' = f x' n' 1
where
f x n y
| n == 1 = x `mul` y
| r == 0 = f x2 q y
| otherwise = f x2 q (x `mul` y)
where
(q,r) = quotRem n 2
x2 = sq x
mulMod :: Integral a => a -> a -> a -> a
mulMod a b c = (b * c) `mod` a
squareMod :: Integral a => a -> a -> a
squareMod a b = (b * b) `rem` a
powMod :: Integral a => a -> a -> a -> a
powMod m = pow' (mulMod m) (squareMod m)
isPrime x=millerRabinPrimality x 2
--isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]]
six=[1,3,7,9,13,27]
allPrime x=foldl (&&) True [isPrime k|a<-six,let k=x^2+a]
linkPrime [x]=filterPrime x
linkPrime (x:xs)=[y|
a<-linkPrime xs,
b<-[0..(x-1)],
let y=b*prxs+a,
let c=mod y x,
elem c d]
where
prxs=product xs
d=filterPrime x
filterPrime p=
[a|
a<-[0..(p-1)],
length[b|b<-six,mod (a^2+b) p/=0]==6
]
testPrimes=[2,3,5,7,11,13,17,23]
primes=[2,3,5,7,11,13,17,23,29]
test =
sum[y|
y<-linkPrime testPrimes,
y<1000000,
allPrime (y)
]==1242490
p146 =[y|y<-linkPrime primes,y<150000000,allPrime (y)]
problem_146=[a|a<-p146, allNext a]
allNext x=
sum [1|(x,y)<-zip a b,x==y]==6
where
a=[x^2+b|b<-six]
b=head a:(map nextPrime a)
nextPrime x=head [a|a<-[(x+1)..],isPrime a]
main=writeFile "p146.log" $show $sum problem_146
Problem 147
Rectangles in cross-hatched grids
Solution:
problem_147 = undefined
Problem 148
Exploring Pascal's triangle.
Solution:
triangel 0 = 0
triangel n
|n <7 =n+triangel (n-1)
|n==k7 =28^k
|otherwise=(triangel i) + j*(triangel (n-i))
where
i=k7*((n-1)`div`k7)
j= -(n`div`(-k7))
k7=7^k
k=floor(log (fromIntegral n)/log 7)
problem_148=triangel (10^9)
Problem 149
Searching for a maximum-sum subsequence.
Solution:
problem_149 = undefined
Problem 150
Searching a triangular array for a sub-triangle having minimum-sum.
Solution:
problem_150 = undefined