Euler problems/141 to 150: Difference between revisions
CaleGibbard (talk | contribs) (rv: vandalism) |
(change view to problems) |
||
Line 1: | Line 1: | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=141 Problem 141] == | ||
Investigating progressive numbers, n, which are also square. | Investigating progressive numbers, n, which are also square. | ||
Line 35: | Line 35: | ||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=142 Problem 142] == | ||
Perfect Square Collection | Perfect Square Collection | ||
Line 92: | Line 92: | ||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=143 Problem 143] == | ||
Investigating the Torricelli point of a triangle | Investigating the Torricelli point of a triangle | ||
Line 204: | Line 204: | ||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=144 Problem 144] == | ||
Investigating multiple reflections of a laser beam. | Investigating multiple reflections of a laser beam. | ||
Line 212: | Line 212: | ||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=145 Problem 145] == | ||
How many reversible numbers are there below one-billion? | How many reversible numbers are there below one-billion? | ||
Line 263: | Line 263: | ||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=146 Problem 146] == | ||
Investigating a Prime Pattern | Investigating a Prime Pattern | ||
Line 269: | Line 269: | ||
<haskell> | <haskell> | ||
import List | import List | ||
isPrime x=millerRabinPrimality x 2 | isPrime x=millerRabinPrimality x 2 | ||
--isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]] | --isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]] | ||
Line 354: | Line 308: | ||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=147 Problem 147] == | ||
Rectangles in cross-hatched grids | Rectangles in cross-hatched grids | ||
Line 362: | Line 316: | ||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=148 Problem 148] == | ||
Exploring Pascal's triangle. | Exploring Pascal's triangle. | ||
Line 380: | Line 334: | ||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=149 Problem 149] == | ||
Searching for a maximum-sum subsequence. | Searching for a maximum-sum subsequence. | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_149 = | #include<stdio.h> | ||
#define N 2000 | |||
#define max(a,b) ((a) > (b) ? (a) : (b)) | |||
int s[4000001]; | |||
int MaxSubsequenceSum(int s[] , int n) { | |||
int j; | |||
int ThisSum, MaxSum ; | |||
ThisSum = MaxSum = 0; | |||
for ( j=0; j<n ; j++) | |||
{ | |||
ThisSum += s[j]; | |||
if (ThisSum> MaxSum) | |||
MaxSum = ThisSum; | |||
else if (ThisSum < 0) | |||
ThisSum = 0; | |||
} | |||
return MaxSum; | |||
} | |||
long long Generate(int ind){ | |||
long long k = ind; | |||
if (ind <= 55) | |||
return ((100003 - 200003*k + 300007*k*k*k) % 1000000) - 500000; | |||
return (s[k-24]+s[k-55]+1000000)%1000000-500000; | |||
} | |||
int main() | |||
{ | |||
int sums=0; | |||
int maxx=0; | |||
for (int i=1;i<4000001;i++){ | |||
s[i]=(int)(Generate(i)); | |||
} | |||
printf("%d %d \n",s[10],s[100]); | |||
int ks[N],kss[N]; | |||
for (int k=0;k<N;k++){ | |||
for(int b=0;b<N;b++) | |||
{ | |||
ks[b]=s[k*N+b+1]; | |||
kss[b]=s[b*N+k+1]; | |||
} | |||
sums=MaxSubsequenceSum(ks,N); | |||
sums=max(sums,MaxSubsequenceSum(kss,N)); | |||
maxx=max (maxx,sums); | |||
} | |||
int ksi,ksj, x,y,y1; | |||
for (int k=-N+1;k<N;k++){ | |||
ksi=ksj=0; | |||
for(int b=0;b<N;b++) | |||
{ | |||
x=k+b; | |||
y=b; | |||
y1=N-1-b; | |||
if (x>-1 && x<N && y>-1 && y<N) | |||
ks[ksi++]=s[x*N+y+1]; | |||
if (x>-1 && x<N && y1>-1 && y1<N) | |||
kss[ksj++]=s[x*N+y1+1]; | |||
} | |||
sums=MaxSubsequenceSum(ks,ksi); | |||
sums=max(sums,MaxSubsequenceSum(kss,ksj)); | |||
maxx=max (maxx,sums); | |||
} | |||
printf("%d\n",maxx); | |||
} | |||
problem_149 = main | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=problems&id=150 Problem 150] == | ||
Searching a triangular array for a sub-triangle having minimum-sum. | Searching a triangular array for a sub-triangle having minimum-sum. | ||
Revision as of 02:07, 4 February 2008
Problem 141
Investigating progressive numbers, n, which are also square.
Solution:
import Data.List
intSqrt :: Integral a => a -> a
intSqrt n
| n < 0 = error "intSqrt: negative n"
| otherwise = f n
where
f x = if y < x then f y else x
where y = (x + (n `quot` x)) `quot` 2
isSqrt n = n==((^2).intSqrt) n
takec a b =
two++takeWhile (<=e12)
[sq| c1<-[1..], let c=c1*c1,let sq=(c^2*a^3*b+b^2*c) ]
where
e12=10^12
two=[sq|c<-[b,2*b],let sq=(c^2*a^3*b+b^2*c) ]
problem_141=
sum$nub[c|
(a,b)<-takeWhile (\(a,b)->a^3*b+b^2<e12)
[(a,b)|
a<-[2..e4],
b<-[1..(a-1)]
],
gcd a b==1,
c<-takec a b,
isSqrt c
]
where
e4=120
e12=10^12
Problem 142
Perfect Square Collection
Solution:
import List
isSquare n = (round . sqrt $ fromIntegral n) ^ 2 == n
aToX (a,b,c)=[x,y,z]
where
x=div (a+b) 2
y=div (a-b) 2
z=c-x
{-
- 2 2 2
- a = c + d
- 2 2 2
- a = e + f
- 2 2 2
- c = e + b
- let b=x*y then
- (y + xb)
- c= ---------
- 2
- (-y + xb)
- e= ---------
- 2
- (-x + yb)
- d= ---------
- 2
- (x + yb)
- f= ---------
- 2
-
- and
- 2 2 2
- a = c + d
- then
- 2 2 2 2
- 2 (y + x ) (x y + 1)
- a = ---------------------
- 4
-
-}
problem_142 = sum$head[aToX(t,t2 ,t3)|
a<-[3,5..50],
b<-[(a+2),(a+4)..50],
let a2=a^2,
let b2=b^2,
let n=(a2+b2)*(a2*b2+1),
isSquare n,
let t=div n 4,
let t2=a2*b2,
let t3=div (a2*(b2+1)^2) 4
]
Problem 143
Investigating the Torricelli point of a triangle
Solution:
import Data.List
import Data.Array.ST
import Data.Array
import qualified Data.Array.Unboxed as U
import Control.Monad
mkCan :: [Int] -> [(Int,Int)]
mkCan lst = map func $ group $ insert 3 lst
where
func ps@(p:_)
| p == 3 = (3,2*l-1)
| otherwise = (p, 2*l)
where
l = length ps
spfArray :: U.UArray Int Int
spfArray
= runSTUArray
(do ar <- newArray (2,13397) 0
let loop k
| k > 13397 = return ()
| otherwise = do writeArray ar k 2
loop (k+2)
loop 2
let go i
| i > 13397 = return ar
| otherwise
= do p <- readArray ar i
if (p == 0)
then do writeArray ar i i
let run k
| k > 13397 = go (i+2)
| otherwise
= do q <- readArray ar k
when (q == 0)
(writeArray ar k i)
run (k+2*i)
run (i*i)
else go (i+2)
go 3)
factArray :: Array Int [Int]
factArray
= runSTArray
(do ar <- newArray (1,13397) []
let go i
| i > 13397 = return ar
| otherwise = do let p = spfArray U.! i
q = i `div` p
fs <- readArray ar q
writeArray ar i (p:fs)
go (i+1)
go 2)
sdivs :: Int -> [(Int,Int)]
sdivs s
= filter ((<= 100000) . uncurry (+)) $ zip sds' lds'
where
bd = 3*s*s
pks = mkCan $ factArray ! s
fun (p,k) = take (k+1) $ iterate (*p) 1
ds = map fun pks
(sds,lds) = span ((< bd) . (^2)) . sort $ foldr (liftM2 (*)) [1] ds
sds' = map (+ 2*s) sds
lds' = reverse $ map (+ 2*s) lds
pairArray :: Array Int [Int]
pairArray
= runSTArray
(do ar <- newArray (3,50000) []
let go s
| s > 13397 = return ar
| otherwise
= do let run [] = go (s+1)
run ((r,q):ds)
= do lst <- readArray ar r
let nlst = insert q lst
writeArray ar r nlst
run ds
run $ sdivs s
go 1)
select2 :: [Int] -> [(Int,Int)]
select2 [] = []
select2 (a:bs) = [(a,b) | b <- bs] ++ select2 bs
sumArray :: U.UArray Int Bool
sumArray
= runSTUArray
(do ar <- newArray (12,100000) False
let go r
| r > 33332 = return ar
| otherwise
= do let run [] = go (r+1)
run ((q,p):xs)
= do when (p `elem` (pairArray!q))
(writeArray ar (p+q+r) True)
run xs
run $ filter ((<= 100000) . (+r) . uncurry (+)) $
select2 $ pairArray!r
go 3)
main :: IO ()
main = writeFile "p143.log"$show$ sum [s | (s,True) <- U.assocs sumArray]
problem_143 = main
Problem 144
Investigating multiple reflections of a laser beam.
Solution:
problem_144 = undefined
Problem 145
How many reversible numbers are there below one-billion?
Solution:
import List
digits n
{- 123->[3,2,1]
-}
|n<10=[n]
|otherwise= y:digits x
where
(x,y)=divMod n 10
-- 123 ->321
dmm=(\x y->x*10+y)
palind n=foldl dmm 0 (digits n)
isOdd x=(length$takeWhile odd x)==(length x)
isOdig x=isOdd m && s<=h
where
k=x+palind x
m=digits k
y=floor$logBase 10 $fromInteger x
ten=10^y
s=mod x 10
h=div x ten
a2=[i|i<-[10..99],isOdig i]
aa2=[i|i<-[10..99],isOdig i,mod i 10/=0]
a3=[i|i<-[100..999],isOdig i]
m5=[i|i1<-[0..99],i2<-[0..99],
let i3=i1*1000+3*100+i2,
let i=10^6* 8+i3*10+5,
isOdig i
]
fun i
|i==2 =2*le aa2
|even i=(fun 2)*d^(m-1)
|i==3 =2*le a3
|i==7 =fun 3*le m5
|otherwise=0
where
le=length
m=div i 2
d=2*le a2
problem_145 = sum[fun a|a<-[1..9]]
Problem 146
Investigating a Prime Pattern
Solution:
import List
isPrime x=millerRabinPrimality x 2
--isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]]
six=[1,3,7,9,13,27]
allPrime x=foldl (&&) True [isPrime k|a<-six,let k=x^2+a]
linkPrime [x]=filterPrime x
linkPrime (x:xs)=[y|
a<-linkPrime xs,
b<-[0..(x-1)],
let y=b*prxs+a,
let c=mod y x,
elem c d]
where
prxs=product xs
d=filterPrime x
filterPrime p=
[a|
a<-[0..(p-1)],
length[b|b<-six,mod (a^2+b) p/=0]==6
]
testPrimes=[2,3,5,7,11,13,17,23]
primes=[2,3,5,7,11,13,17,23,29]
test =
sum[y|
y<-linkPrime testPrimes,
y<1000000,
allPrime (y)
]==1242490
p146 =[y|y<-linkPrime primes,y<150000000,allPrime (y)]
problem_146=[a|a<-p146, allNext a]
allNext x=
sum [1|(x,y)<-zip a b,x==y]==6
where
a=[x^2+b|b<-six]
b=head a:(map nextPrime a)
nextPrime x=head [a|a<-[(x+1)..],isPrime a]
main=writeFile "p146.log" $show $sum problem_146
Problem 147
Rectangles in cross-hatched grids
Solution:
problem_147 = undefined
Problem 148
Exploring Pascal's triangle.
Solution:
triangel 0 = 0
triangel n
|n <7 =n+triangel (n-1)
|n==k7 =28^k
|otherwise=(triangel i) + j*(triangel (n-i))
where
i=k7*((n-1)`div`k7)
j= -(n`div`(-k7))
k7=7^k
k=floor(log (fromIntegral n)/log 7)
problem_148=triangel (10^9)
Problem 149
Searching for a maximum-sum subsequence.
Solution:
#include<stdio.h>
#define N 2000
#define max(a,b) ((a) > (b) ? (a) : (b))
int s[4000001];
int MaxSubsequenceSum(int s[] , int n) {
int j;
int ThisSum, MaxSum ;
ThisSum = MaxSum = 0;
for ( j=0; j<n ; j++)
{
ThisSum += s[j];
if (ThisSum> MaxSum)
MaxSum = ThisSum;
else if (ThisSum < 0)
ThisSum = 0;
}
return MaxSum;
}
long long Generate(int ind){
long long k = ind;
if (ind <= 55)
return ((100003 - 200003*k + 300007*k*k*k) % 1000000) - 500000;
return (s[k-24]+s[k-55]+1000000)%1000000-500000;
}
int main()
{
int sums=0;
int maxx=0;
for (int i=1;i<4000001;i++){
s[i]=(int)(Generate(i));
}
printf("%d %d \n",s[10],s[100]);
int ks[N],kss[N];
for (int k=0;k<N;k++){
for(int b=0;b<N;b++)
{
ks[b]=s[k*N+b+1];
kss[b]=s[b*N+k+1];
}
sums=MaxSubsequenceSum(ks,N);
sums=max(sums,MaxSubsequenceSum(kss,N));
maxx=max (maxx,sums);
}
int ksi,ksj, x,y,y1;
for (int k=-N+1;k<N;k++){
ksi=ksj=0;
for(int b=0;b<N;b++)
{
x=k+b;
y=b;
y1=N-1-b;
if (x>-1 && x<N && y>-1 && y<N)
ks[ksi++]=s[x*N+y+1];
if (x>-1 && x<N && y1>-1 && y1<N)
kss[ksj++]=s[x*N+y1+1];
}
sums=MaxSubsequenceSum(ks,ksi);
sums=max(sums,MaxSubsequenceSum(kss,ksj));
maxx=max (maxx,sums);
}
printf("%d\n",maxx);
}
problem_149 = main
Problem 150
Searching a triangular array for a sub-triangle having minimum-sum.
Solution:
problem_150 = undefined