OpenGLTutorial2: Difference between revisions

From HaskellWiki
(Updated frame section and links)
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
''This tutorial [http://blog.mikael.johanssons.org/archive/2006/09/opengl-programming-in-haskell-a-tutorial-part-2/] was originally written by Mikael Vejdemo Johansson, and was copied here with permission.  Parts of the tutorial have been modified and extended to keep it up to date.''
''This tutorial [http://blog.mikael.johanssons.org/archive/2006/09/opengl-programming-in-haskell-a-tutorial-part-2/] was originally written by Mikael Vejdemo Johansson, and was copied here with permission.  Parts of the tutorial have been modified and extended to keep it up to date.''


As we left off the [[OpenGLTutorial1|last installment]], we were just about capable to open up a window, and draw some basic things in it by giving coordinate lists to the command renderPrimitive. The programs we built suffered under a couple of very infringing and ugly restraints when we wrote them - for one, they weren't really very modularized. The code would have been much clearer had we farmed out important subtasks on other modules. For another, we never even considered the fact that some manipulations would not necessarily be good to do on the entire picture.
As we left off the [[OpenGLTutorial1|last installment]], we were just about capable to open up a window, and draw some basic things in it by giving coordinate lists to the command <hask>renderPrimitive</hask>. The programs we built suffered under a couple of very infringing and ugly restraints when we wrote them - for one, they weren't really very modularized. The code would have been much clearer had we farmed out important subtasks on other modules. For another, we never even considered the fact that some manipulations would not necessarily be good to do on the entire picture.


==Some modules==
==Some modules==
Line 8: Line 8:
First off, HelloWorld.hs - containing a very generic program skeleton. We will use our module Bindings to setup everything else we might need, and tie them to the callbacks.
First off, HelloWorld.hs - containing a very generic program skeleton. We will use our module Bindings to setup everything else we might need, and tie them to the callbacks.
<haskell>
<haskell>
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Bindings
import Bindings


main :: IO ()
main = do
main = do
   (progname,_) <- getArgsAndInitialize
   (_progName, _args) <- getArgsAndInitialize
   createWindow "Hello World"
   _window <- createWindow "Hello World"
   displayCallback $= display
   displayCallback $= display
   reshapeCallback $= Just reshape
   reshapeCallback $= Just reshape
Line 21: Line 20:
   mainLoop
   mainLoop
</haskell>
</haskell>
Then Bindings.hs - our switchboard
Then Bindings.hs - our switchboard:
<haskell>
<haskell>
module Bindings (display,reshape,keyboardMouse) where
module Bindings (display, reshape, keyboardMouse) where


import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Display
import Display


reshape s@(Size w h) = do  
reshape :: ReshapeCallback
   viewport $= (Position 0 0, s)
reshape size = do  
   viewport $= (Position 0 0, size)


keyboardMouse key state modifiers position = return ()
keyboardMouse :: KeyboardMouseCallback
keyboardMouse _key _state _modifiers _position = return ()
</haskell>
</haskell>


We're going to be hacking around a LOT with the display function, so let's isolate that one to a module of its own: Display.hs
We're going to be hacking around a LOT with the display function, so let's isolate that one to a module of its own: Display.hs
<haskell>
<haskell>
module Display (display) where
module Display (display) where


import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Cube
import Cube


display :: DisplayCallback
display = do  
display = do  
   clear [ColorBuffer]
   clear [ColorBuffer]
   cube (0.2::GLfloat)
   cube 0.2
   flush
   flush
</haskell>
</haskell>
Line 54: Line 53:
module Cube where
module Cube where


import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT


cube w = do  
cube :: GLfloat -> IO ()
cube w = do
   renderPrimitive Quads $ do
   renderPrimitive Quads $ do
     vertex $ Vertex3 w w w
     vertex $ Vertex3 w w w
Line 85: Line 84:
</haskell>
</haskell>


Now, compiling this entire section with the command <hask>ghc –make -package GLUT HelloWorld.hs -o HelloWorld</hask> compiles and links each module needed, and produces, in the end, an executable to be used. There we go! Much more modularized, much smaller and simpler bits and pieces. And - an added boon - we won't normally need to recompile as much for each change we do.
Now, compiling this entire section with the command <code>ghc --make HelloWorld.hs</code> compiles and links each module needed, and produces an executable to be used. There we go! Much more modularized, much smaller and simpler bits and pieces. And - an added boon - we won't normally need to recompile as much for each change we do. As an alternative, you could just load HelloWorld.hs into GHCi and run it via <hask>main</hask>.


This skeletal program will look like:
This skeletal program will look like:
Line 97: Line 96:
<haskell>
<haskell>
module Cube where
module Cube where
 
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
vertex3f :: (GLfloat, GLfloat, GLfloat) -> IO ()
vertex3f (x, y, z) = vertex $ Vertex3 x y z


vertify3 :: [(GLfloat,GLfloat,GLfloat)] -> IO ()
cube :: GLfloat -> IO ()
vertify3 verts = sequence_ $ map (\(a,b,c) -> vertex $ Vertex3 a b c) verts
cube w = renderPrimitive Quads $ mapM_ vertex3f
 
  [ ( w, w, w), ( w, w,-w), ( w,-w,-w), ( w,-w, w),
cube w = renderPrimitive Quads $ vertify3
    ( w, w, w), ( w, w,-w), (-w, w,-w), (-w, w, w),
      [ ( w, w, w), ( w, w,-w), ( w,-w,-w), ( w,-w, w),
    ( w, w, w), ( w,-w, w), (-w,-w, w), (-w, w, w),
        ( w, w, w), ( w, w,-w), (-w, w,-w), (-w, w, w),
    (-w, w, w), (-w, w,-w), (-w,-w,-w), (-w,-w, w),
        ( w, w, w), ( w,-w, w), (-w,-w, w), (-w, w, w),
    ( w,-w, w), ( w,-w,-w), (-w,-w,-w), (-w,-w, w),
        (-w, w, w), (-w, w,-w), (-w,-w,-w), (-w,-w, w),
    ( w, w,-w), ( w,-w,-w), (-w,-w,-w), (-w, w,-w) ]
        ( w,-w, w), ( w,-w,-w), (-w,-w,-w), (-w,-w, w),
        ( w, w,-w), ( w,-w,-w), (-w,-w,-w), (-w, w,-w) ]
</haskell>
</haskell>


We introduce a function <code>vertify3</code>, which takes a list of 3-dimensional vertices, maps it into a list of OpenGL <code>vertex</code> actions, and executes them in sequence. We can use this for any vertex-based OpenGL actions.  In the example, each row of four vertices corresponds to a single OpenGL <code>Quad</code>.
We introduce a function <code>vertex3f</code>, which takes a coordinate triple and converts it into an OpenGL <code>vertex</code> action. Using <hask>mapM_</hask>, we can map this over a list of triples and execute the resulting actions in sequence. In the example, each row of four vertices corresponds to a single OpenGL <code>Quad</code>.


==Local transformations==
==Local transformations==
Line 121: Line 120:


We'll change the rather boring display subroutine in Display.hs into one using preservingMatrix to modify each cube drawn individually, giving a new Display.hs:
We'll change the rather boring display subroutine in Display.hs into one using preservingMatrix to modify each cube drawn individually, giving a new Display.hs:
<haskell>
<haskell>
module Display (display) where
module Display (display) where


import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
 
import Control.Monad
import Cube
import Cube


points :: [(GLfloat,GLfloat,GLfloat)]
points :: [(GLfloat,GLfloat,GLfloat)]
points = map (\k -> (sin(2*pi*k/12),cos(2*pi*k/12),0.0)[1..12]
points = [ (sin (2*pi*k/12), cos (2*pi*k/12), 0) | k <- [1..12] ]


display = do  
display :: DisplayCallback
display = do
   clear [ColorBuffer]
   clear [ColorBuffer]
   mapM_ (\(x,y,z) -> preservingMatrix $ do
   forM_ points $ \(x,y,z) ->
    color $ Color3 x y z
    preservingMatrix $ do
    translate $ Vector3 x y z
      color $ Color3 x y z
    cube (0.1::GLfloat)
      translate $ Vector3 x y z
    ) points
      cube 0.1
   flush
   flush
</haskell>
</haskell>
Say... Those points on the unit circle might be something we'll want more of. Let's abstract some again! We'll break them out to a Points.hs. We'll have to juggle a bit with the typesystem to get things to work out, and in the end we get
 
Say... Those points on the unit circle might be something we'll want more of. Let's abstract some again! We'll break them out to a Points.hs:
 
<haskell>
<haskell>
module Points where
module Points where
Line 148: Line 150:


points :: Int -> [(GLfloat,GLfloat,GLfloat)]
points :: Int -> [(GLfloat,GLfloat,GLfloat)]
points n' = let n = fromIntegral n' in
points n = [ (sin (2*pi*k/n'), cos (2*pi*k/n'), 0) | k <- [1..n'] ]
            map (\k -> let t = 2*pi*k/n in (sin(t),cos(t),0.0)[1..n]
  where n' = fromIntegral n
</haskell>
</haskell>
and then we get the Display.hs
and then we get the Display.hs:
<haskell>
<haskell>
module Display (display) where
module Display (display) where


import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
 
import Control.Monad
import Cube
import Cube
import Points
import Points


display = do  
display :: DisplayCallback
display = do
   clear [ColorBuffer]
   clear [ColorBuffer]
   mapM_ (\(x,y,z) -> preservingMatrix $ do
   forM_ (points 7) $ \(x,y,z) ->
    color $ Color3 ((x+1.0)/2.0) ((y+1.0)/2.0) ((z+1.0)/2.0)
    preservingMatrix $ do
    translate $ Vector3 x y z
      color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
    cube (0.1::GLfloat)
      translate $ Vector3 x y z
    ) $ points 7
      cube 0.1
   flush
   flush
</haskell>
</haskell>
where we note that we need to renormalize our colours to get them within the interval [0,1] from the interval [-1,1] in order to get valid colour values. The program looks like
where we note that we need to renormalize our colours to get them within the interval [0,1] from the interval [-1,1] in order to get valid colour values. The output looks like:


[[image:OG-7circle.png]]
[[image:OG-7circle.png]]
Line 191: Line 193:


<haskell>
<haskell>
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Data.IORef
import Bindings
import Bindings
import Data.IORef
 
main :: IO ()
main = do
main = do
   (progname,_) <- getArgsAndInitialize
   (_progName, _args) <- getArgsAndInitialize
   createWindow "Hello World"
   _window <- createWindow "Hello World"
   reshapeCallback $= Just reshape
   reshapeCallback $= Just reshape
   keyboardMouseCallback $= Just keyboardMouse
   keyboardMouseCallback $= Just keyboardMouse
   angle <- newIORef 0.0
   angle <- newIORef 0.0
   displayCallback $= (display angle)
   displayCallback $= display angle
   idleCallback $= Just (idle angle)
   idleCallback $= Just (idle angle)
   mainLoop
   mainLoop
Line 208: Line 211:


Exporting it all the way requires us to change the first line of Bindings.hs to
Exporting it all the way requires us to change the first line of Bindings.hs to
<haskell>module Bindings (idle,display,reshape,keyboardMouse) where</haskell>
<haskell>module Bindings (idle, display, reshape, keyboardMouse) where</haskell>


Display.hs:
Display.hs:
<haskell>
<haskell>
module Display (display,idle) where
module Display (idle, display) where
import Graphics.Rendering.OpenGL
 
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Control.Monad
import Data.IORef
import Data.IORef
import Cube
import Cube
import Points
import Points
display angle = do  
 
display :: IORef GLfloat -> DisplayCallback
display angle = do
   clear [ColorBuffer]
   clear [ColorBuffer]
   a <- get angle
   a <- get angle
   rotate a $ Vector3 0 0 (1::GLfloat)
   rotate a $ Vector3 0 0 1
   scale 0.7 0.7 (0.7::GLfloat)
   scale 0.7 0.7 (0.7::GLfloat)
   mapM_ (\(x,y,z) -> preservingMatrix $ do
   forM_ (points 7) $ \(x,y,z) ->
    color $ Color3 ((x+1.0)/2.0) ((y+1.0)/2.0) ((z+1.0)/2.0)
    preservingMatrix $ do
    translate $ Vector3 x y z
      color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
    cube (0.1::GLfloat)
      translate $ Vector3 x y z
    ) $ points 7
      cube 0.1
   flush
   flush
idle :: IORef GLfloat -> IdleCallback
idle angle = do
idle angle = do
  a <- get angle
   angle $~! (+ 0.1)
   angle $=! (a + 0.1) -- The parens are necessary due to a precedence bug in StateVar
   postRedisplay Nothing
   postRedisplay Nothing -- Only required on Mac OS X, which double-buffers internally
</haskell>
</haskell>
   
   
Line 238: Line 245:


<haskell>
<haskell>
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Data.IORef
import Data.IORef
import Bindings
import Bindings
main :: IO ()
main = do
main = do
   (progname,_) <- getArgsAndInitialize
   (_progName, _args) <- getArgsAndInitialize
   initialDisplayMode $= [DoubleBuffered]
   initialDisplayMode $= [DoubleBuffered]
   createWindow "Hello World"
   _window <- createWindow "Hello World"
   reshapeCallback $= Just reshape
   reshapeCallback $= Just reshape
   keyboardMouseCallback $= Just keyboardMouse
   keyboardMouseCallback $= Just keyboardMouse
   angle <- newIORef 0.0
   angle <- newIORef 0.0
  displayCallback $= display angle
   idleCallback $= Just (idle angle)
   idleCallback $= Just (idle angle)
  displayCallback $= (display angle)
   mainLoop
   mainLoop
</haskell>
</haskell>
and we also need to modify Display.hs to implement the bufferswapping. While we're at it, we add the command loadIdentity, which resets the modification matrix.
and we also need to modify Display.hs to implement the buffer swapping. While we're at it, we add the command <hask>loadIdentity</hask>, which resets the modification matrix.
<haskell>
<haskell>
module Display (display,idle) where
module Display (idle, display) where
import Graphics.Rendering.OpenGL
 
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Control.Monad
import Data.IORef
import Data.IORef
import Cube
import Cube
import Points
import Points
display angle = do  
 
display :: IORef GLfloat -> DisplayCallback
display angle = do
   clear [ColorBuffer]
   clear [ColorBuffer]
   loadIdentity
   loadIdentity
   a <- get angle
   a <- get angle
   rotate a $ Vector3 0 0 (1::GLfloat)
   rotate a $ Vector3 0 0 1
   scale 0.7 0.7 (0.7::GLfloat)
   scale 0.7 0.7 (0.7::GLfloat)
   mapM_ (\(x,y,z) -> preservingMatrix $ do
   forM_ (points 7) $ \(x,y,z) ->
    color $ Color3 ((x+1.0)/2.0) ((y+1.0)/2.0) ((z+1.0)/2.0)
    preservingMatrix $ do
    translate $ Vector3 x y z
      color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
    cube (0.1::GLfloat)
      translate $ Vector3 x y z
    ) $ points 7
      cube 0.1
   swapBuffers
   swapBuffers
idle :: IORef GLfloat -> IdleCallback
idle angle = do
idle angle = do
  a <- get angle
   angle $~! (+ 0.1)
   angle $=! a+0.1
   postRedisplay Nothing
   postRedisplay Nothing
</haskell>
</haskell>


There we are! That looks pretty, doesn't it? Now, we could start adding control to the user, couldn't we? Let's add some keyboard interfaces. We'll start by letting the rotation direction change when we press spacebar, and let the arrows displace the whole figure and + and - increase/decrease the rotation speed.
There we are! That looks pretty, doesn't it? Now, we could start adding control to the user, couldn't we? Let's add some keyboard interfaces. We'll start by letting the rotation direction change when we press spacebar, and let the arrows displace the whole figure and + and - increase/decrease the rotation speed.
Again, we're adding states, so we need to modify HelloWorld.hs
Again, we're adding states, so we need to modify HelloWorld.hs:
<haskell>
<haskell>
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Data.IORef
import Data.IORef
import Bindings
import Bindings
main :: IO ()
main = do
main = do
   (progname,_) <- getArgsAndInitialize
   (_progName, _args) <- getArgsAndInitialize
   initialDisplayMode $= [DoubleBuffered]
   initialDisplayMode $= [DoubleBuffered]
   createWindow "Hello World"
   _window <- createWindow "Hello World"
   reshapeCallback $= Just reshape
   reshapeCallback $= Just reshape
   angle <- newIORef (0.0::GLfloat)
   angle <- newIORef 0
   delta <- newIORef (0.1::GLfloat)
   delta <- newIORef 0.1
   position <- newIORef (0.0::GLfloat, 0.0)
   pos <- newIORef (0, 0)
   keyboardMouseCallback $= Just (keyboardMouse delta position)
   keyboardMouseCallback $= Just (keyboardMouse delta pos)
   idleCallback $= Just (idle angle delta)
   idleCallback $= Just (idle angle delta)
   displayCallback $= (display angle position)
   displayCallback $= display angle pos
   mainLoop
   mainLoop
</haskell>
</haskell>


Note that position is sent along to the keyboard as well as the display callbacks. And in Bindings.hs, we give the keyboard callback actual function
Note that position is sent along to the keyboard as well as the display callbacks. And in Bindings.hs, we give the keyboard callback actual function
<haskell>
<haskell>
module Bindings (idle,display,reshape,keyboardMouse) where
module Bindings (idle, display, reshape, keyboardMouse) where
import Graphics.Rendering.OpenGL
 
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Data.IORef
import Data.IORef
import Display
import Display
reshape s@(Size w h) = do  
 
   viewport $= (Position 0 0, s)
reshape :: ReshapeCallback
keyboardAct a p (Char ' ') Down = do
reshape size = do  
  a' <- get a
   viewport $= (Position 0 0, size)
   a $= -a'
 
keyboardAct a p (Char '+') Down = do
keyboardMouse :: IORef GLfloat -> IORef (GLfloat, GLfloat) -> KeyboardMouseCallback
  a' <- get a
keyboardMouse a p key Down _ _ = case key of
  a $= 2*a'
  (Char ' ') -> a $~! negate
keyboardAct a p (Char '-') Down = do
   (Char '+') -> a $~! (* 2)
  a' <- get a
  (Char '-') -> a $~! (/ 2)
  a $= a'/2
  (SpecialKey KeyLeft ) -> p $~! \(x,y) -> (x-0.1,y)
keyboardAct a p (SpecialKey KeyLeft) Down = do
  (SpecialKey KeyRight) -> p $~! \(x,y) -> (x+0.1,y)
  (x,y) <- get p
  (SpecialKey KeyUp   ) -> p $~! \(x,y) -> (x,y+0.1)
  p $= (x-0.1,y)
  (SpecialKey KeyDown ) -> p $~! \(x,y) -> (x,y-0.1)
keyboardAct a p (SpecialKey KeyRight) Down = do
  _ -> return ()
  (x,y) <- get p
keyboardMouse _ _ _ _ _ _ = return ()
  p $= (x+0.1,y)
keyboardAct a p(SpecialKey KeyUp) Down = do
  (x,y) <- get p
  p $= (x,y+0.1)
keyboardAct a p (SpecialKey KeyDown) Down = do
  (x,y) <- get p
  p $= (x,y-0.1)
keyboardAct _ _ _ _ = return ()
keyboardMouse angle pos key state modifiers position = do
  keyboardAct angle pos key state
</haskell>
</haskell>


Finally, in Display.hs we use the new information to accordingly redraw the scene, specifically the now changing amount to change the current angle with. Note that in order to avoid the placement of the circle to be pulled in with all the other modifications we're doing, we do the translation outside a preservingMatrix call.
Finally, in Display.hs we use the new information to accordingly redraw the scene, specifically the now changing amount to change the current angle with. Note that in order to avoid the placement of the circle to be pulled in with all the other modifications we're doing, we do the translation outside a <hask>preservingMatrix</hask> call:


<haskell>
<haskell>
module Display (display,idle) where
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Control.Monad
import Data.IORef
import Data.IORef
import Cube
import Cube
import Points
import Points
display angle position = do  
 
display :: IORef GLfloat -> IORef (GLfloat, GLfloat) -> DisplayCallback
display angle pos = do  
   clear [ColorBuffer]
   clear [ColorBuffer]
   loadIdentity
   loadIdentity
   (x,y) <- get position
   (x',y') <- get pos
   translate $ Vector3 x y 0
   translate $ Vector3 x' y' 0
   preservingMatrix $ do  
   preservingMatrix $ do
     a <- get angle
     a <- get angle
     rotate a $ Vector3 0 0 (1::GLfloat)
     rotate a $ Vector3 0 0 1
     scale 0.7 0.7 (0.7::GLfloat)
     scale 0.7 0.7 (0.7::GLfloat)
     mapM_ (\(x,y,z) -> preservingMatrix $ do
     forM_ (points 7) $ \(x,y,z) -> preservingMatrix $ do
       color $ Color3 ((x+1.0)/2.0) ((y+1.0)/2.0) ((z+1.0)/2.0)
       color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
       translate $ Vector3 x y z
       translate $ Vector3 x y z
       cube (0.1::GLfloat)
       cube 0.1
      ) $ points 7
   swapBuffers
   swapBuffers
idle :: IORef GLfloat -> IORef GLfloat -> IdleCallback
idle angle delta = do
idle angle delta = do
  a <- get angle
   d <- get delta
   d <- get delta
   angle $=! (a+d) --parens needed for a bug in StateVar
   angle $~! (+ d)
   postRedisplay Nothing
   postRedisplay Nothing
</haskell>
</haskell>
Line 369: Line 374:
The code we have written so far may not handle depth properly, but the program as-written won't reveal whether or not this is the case!  Let's extend the example to add outlines the cubes, and add depth to the animation!
The code we have written so far may not handle depth properly, but the program as-written won't reveal whether or not this is the case!  Let's extend the example to add outlines the cubes, and add depth to the animation!


The code for the wire frame belongs in Cube.hs.  We can write a wire frame using <code>vertify3</code> from above:
The code for the wire frame belongs in Cube.hs.  We can draw a wire frame using <code>vertex3f</code> from above:


<haskell>
<haskell>
cubeFrame w = renderPrimitive Lines $ vertify3
cubeFrame :: GLfloat -> IO ()
cubeFrame w = renderPrimitive Lines $ mapM_ vertex3f
   [ ( w,-w, w), ( w, w, w),  ( w, w, w), (-w, w, w),
   [ ( w,-w, w), ( w, w, w),  ( w, w, w), (-w, w, w),
     (-w, w, w), (-w,-w, w),  (-w,-w, w), ( w,-w, w),
     (-w, w, w), (-w,-w, w),  (-w,-w, w), ( w,-w, w),
Line 378: Line 384:
     (-w, w, w), (-w, w,-w),  (-w,-w, w), (-w,-w,-w),
     (-w, w, w), (-w, w,-w),  (-w,-w, w), (-w,-w,-w),
     ( w,-w,-w), ( w, w,-w),  ( w, w,-w), (-w, w,-w),
     ( w,-w,-w), ( w, w,-w),  ( w, w,-w), (-w, w,-w),
     (-w, w,-w), (-w,-w,-w),  (-w,-w,-w), ( w,-w,-w) ]  
     (-w, w,-w), (-w,-w,-w),  (-w,-w,-w), ( w,-w,-w) ]
</haskell>
</haskell>


This function draws lines over the wireframe of the cube.
If you simply call this with a unique color in your <hask>display</hask> function, you may not get the results you expect.  You might see lines which should be occluded, or you might not see new lines at all.  Let's take a look at how we can fix some of these problems.
 
If you simply call this with a unique color in your <code>display</code> function, you may not get the results you expect.  You might see lines which should be occluded, or you might not see new lines at all.  Let's take a look at how we can fix some of these problems.


The first thing we need to do is ensure that we initialize our window with a DepthBuffer. The DepthBuffer indicates the current depth of a pixel on our screen, allowing OpenGL to determine whether or not to draw over the current color.  We also need to specify how our DepthBuffer will do this.  We want things with less depth to be rendered above those with more depth, so we used the comparison function <code>Less</code>.  We again modify the HelloWorld.hs as follows:
The first thing we need to do is ensure that we initialize our window with a depth buffer. The depth buffer indicates the current depth of a pixel on our screen, allowing OpenGL to determine whether or not to draw over the current color.  We also need to specify how our depth buffer will do this.  We want things with less depth to be rendered above those with more depth, so we use the comparison function <hask>Less</hask>.  We again modify the HelloWorld.hs as follows:


<haskell>
<haskell>
import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Data.IORef
import Data.IORef
import Bindings
import Bindings
main :: IO ()
main = do
main = do
   (progname,_) <- getArgsAndInitialize
   (_progName, _args) <- getArgsAndInitialize
   initialDisplayMode $= [WithDepthBuffer,DoubleBuffered] -- add a depth buffer
   initialDisplayMode $= [WithDepthBuffer, DoubleBuffered]
   createWindow "Hello World"
   _window <- createWindow "Hello World"
   reshapeCallback $= Just reshape
   reshapeCallback $= Just reshape
   depthFunc $= Just Less -- specifies comparison function for DepthBuffer
   depthFunc $= Just Less -- the comparison function for depth the buffer
   angle <- newIORef (0.0::GLfloat)
   angle <- newIORef 0
   delta <- newIORef (0.1::GLfloat)
   delta <- newIORef 0.1
   position <- newIORef (0.0::GLfloat, 0.0)
   pos <- newIORef (0, 0)
   keyboardMouseCallback $= Just (keyboardMouse delta position)
   keyboardMouseCallback $= Just (keyboardMouse delta pos)
   idleCallback $= Just (idle angle delta)
   idleCallback $= Just (idle angle delta)
   displayCallback $= (display angle position)
   displayCallback $= display angle pos
   mainLoop
   mainLoop
</haskell>
</haskell>


Lastly, we modify the Display function to have it clear the <code>DepthBuffer,</code> to keep our image in order. We should also call <code>cubeFrame</code> to see our spiffy new outlines, and modify our axis of rotation so we can see the corners of the cubes in action!
Lastly, we modify the Display function to have it clear the depth buffer to keep our image in order. We should also call <hask>cubeFrame</hask> to see our spiffy new outlines, and modify our axis of rotation so we can see the corners of the cubes in action!


<haskell>
<haskell>
module Display (display,idle) where
module Display (idle, display) where
import Graphics.Rendering.OpenGL
 
import Graphics.UI.GLUT
import Graphics.UI.GLUT
import Control.Monad
import Data.IORef
import Data.IORef
import Cube
import Cube
import Points
import Points
display angle position = do  
 
   clear [ColorBuffer,DepthBuffer] --added DepthBuffer to list of things to be cleared
display :: IORef GLfloat -> IORef (GLfloat, GLfloat) -> DisplayCallback
display angle pos = do  
   clear [ColorBuffer, DepthBuffer] -- clear depth buffer, too
  clear [ColorBuffer]
   loadIdentity
   loadIdentity
   (x,y) <- get position
   (x',y') <- get pos
   translate $ Vector3 x y 0
   translate $ Vector3 x' y' 0
   preservingMatrix $ do  
   preservingMatrix $ do
     a <- get angle
     a <- get angle
     rotate a $ Vector3 0 0.1 (1::GLfloat) --change y-component of axis of rotation to show off cube corners
    rotate a $ Vector3 0 0 1
     rotate a $ Vector3 0 0.1 1 -- changed y-component a bit to show off cube corners
     scale 0.7 0.7 (0.7::GLfloat)
     scale 0.7 0.7 (0.7::GLfloat)
     mapM_ (\(x,y,z) -> preservingMatrix $ do
     forM_ (points 7) $ \(x,y,z) -> preservingMatrix $ do
       color $ Color3 ((x+1.0)/2.0) ((y+1.0)/2.0) ((z+1.0)/2.0)
       color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
       translate $ Vector3 x y z
       translate $ Vector3 x y z
       cube (0.1::GLfloat)
       cube 0.1
       color $ Color3 (0.0::GLfloat) (0.0::GLfloat) (0.0::GLfloat) --set outline color to black
       color $ Color3 (0::GLfloat) 0 0 -- set outline color to black
       cubeFrame (0.1::GLfloat) --draw the outline
       cubeFrame 0.1 -- draw the outline
      ) $ points 7
   swapBuffers
   swapBuffers
idle :: IORef GLfloat -> IORef GLfloat -> IdleCallback
idle angle delta = do
idle angle delta = do
  a <- get angle
   d <- get delta
   d <- get delta
   angle $=! (a+d)
   angle $~! (+ d)
   postRedisplay Nothing
   postRedisplay Nothing
</haskell>
</haskell>
Line 447: Line 457:


==Summary==
==Summary==
We now know how to modify only parts of a picture, and we also know how to use the idle and the keyboardMouse callback to support animations and keyboard input.
We now know how to modify only parts of a picture, and we also know how to use the <hask>idle</hask> and the <hask>keyboardMouse</hask> callback to support animations and keyboard input. In order to somewhat limit the amount of typing I need to do, I'll give links that give details on some of the themes we've touched upon.
 
In order to somewhat limit the amount of typing I need to do, I'll give links that give details on some of the themes we've touched upon.


First of all, the callbacks are described in more detail and with call signatures at
First of all, the callbacks are described in more detail and with call signatures at
[http://lambda.haskell.org/platform/doc/2011.4.0.0/packages/GLUT-2.1.2.1/doc/html/Graphics-UI-GLUT-Callbacks-Global.html Graphics.UI.GLUT.Callbacks.Global] for the global callbacks (menu systems, and timing/idle callbacks)
[http://hackage.haskell.org/packages/archive/GLUT/latest/doc/html/Graphics-UI-GLUT-Callbacks-Global.html Graphics.UI.GLUT.Callbacks.Global] for the global callbacks (menu systems, and timing/idle callbacks)


[http://lambda.haskell.org/platform/doc/2011.4.0.0/packages/GLUT-2.1.2.1/doc/html/Graphics-UI-GLUT-Callbacks-Window.html Graphics.UI.GLUT.Callbacks.Window] for the window-specific callbacks (display, reshape, keyboard&mouse, visibility changes, window closing, mouse movement, spaceballs, drawing tablets, joysticks and dial&button)
See [http://hackage.haskell.org/packages/archive/GLUT/latest/doc/html/Graphics-UI-GLUT-Callbacks-Window.html Graphics.UI.GLUT.Callbacks.Window] for the window-specific callbacks (display, reshape, keyboard&mouse, visibility changes, window closing, mouse movement, spaceballs, drawing tablets, joysticks and dial&button)


Furthermore, the various primitives for drawing are listed at [http://lambda.haskell.org/platform/doc/2011.4.0.0/packages/OpenGL-2.2.3.0/doc/html/Graphics-Rendering-OpenGL-GL-BeginEnd.html Graphics.Rendering.OpenGL.GL.BeginEnd].
Furthermore, the various primitives for drawing are listed at [http://hackage.haskell.org/packages/archive/OpenGL/latest/doc/html/Graphics-Rendering-OpenGL-GL-BeginEnd.html Graphics.Rendering.OpenGL.GL.BeginEnd].


There are 3-dimensional primitives ready as well. These can be found at [http://lambda.haskell.org/platform/doc/2011.4.0.0/packages/GLUT-2.1.2.1/doc/html/Graphics-UI-GLUT-Objects.html Graphics.UI.GLUT.Objects]
There are 3-dimensional primitives ready as well. These can be found at [http://hackage.haskell.org/packages/archive/GLUT/latest/doc/html/Graphics-UI-GLUT-Objects.html Graphics.UI.GLUT.Objects].


The flag I set to trigger double buffering is described among the GLUT initialization methods, see [http://lambda.haskell.org/platform/doc/2011.4.0.0/packages/GLUT-2.1.2.1/doc/html/Graphics-UI-GLUT-Initialization.html Graphics.UI.GLUT.Initialization] for everything you can do there.
The flag used to trigger double buffering is described among the GLUT initialization methods, see [http://hackage.haskell.org/packages/archive/GLUT/latest/doc/html/Graphics-UI-GLUT-Initialization.html Graphics.UI.GLUT.Initialization] for everything you can do there.


[[Category:Graphics]]
[[Category:Graphics]]

Latest revision as of 11:52, 20 September 2013

This tutorial [1] was originally written by Mikael Vejdemo Johansson, and was copied here with permission. Parts of the tutorial have been modified and extended to keep it up to date.

As we left off the last installment, we were just about capable to open up a window, and draw some basic things in it by giving coordinate lists to the command renderPrimitive. The programs we built suffered under a couple of very infringing and ugly restraints when we wrote them - for one, they weren't really very modularized. The code would have been much clearer had we farmed out important subtasks on other modules. For another, we never even considered the fact that some manipulations would not necessarily be good to do on the entire picture.

Some modules

To deal with the first problem, let's break apart our program a little bit, forming several more or less independent code files linked together to form a whole.

First off, HelloWorld.hs - containing a very generic program skeleton. We will use our module Bindings to setup everything else we might need, and tie them to the callbacks.

import Graphics.UI.GLUT
import Bindings

main :: IO ()
main = do
  (_progName, _args) <- getArgsAndInitialize
  _window <- createWindow "Hello World"
  displayCallback $= display
  reshapeCallback $= Just reshape
  keyboardMouseCallback $= Just keyboardMouse
  mainLoop

Then Bindings.hs - our switchboard:

module Bindings (display, reshape, keyboardMouse) where

import Graphics.UI.GLUT
import Display

reshape :: ReshapeCallback
reshape size = do 
  viewport $= (Position 0 0, size)

keyboardMouse :: KeyboardMouseCallback
keyboardMouse _key _state _modifiers _position = return ()

We're going to be hacking around a LOT with the display function, so let's isolate that one to a module of its own: Display.hs

module Display (display) where

import Graphics.UI.GLUT
import Cube

display :: DisplayCallback
display = do 
  clear [ColorBuffer]
  cube 0.2
  flush

And a first utility module, containing the gritty details of drawing the cube [w,w]3, called Cube.hs

module Cube where

import Graphics.UI.GLUT

cube :: GLfloat -> IO ()
cube w = do
  renderPrimitive Quads $ do
    vertex $ Vertex3 w w w
    vertex $ Vertex3 w w (-w)
    vertex $ Vertex3 w (-w) (-w)
    vertex $ Vertex3 w (-w) w
    vertex $ Vertex3 w w w
    vertex $ Vertex3 w w (-w)
    vertex $ Vertex3 (-w) w (-w)
    vertex $ Vertex3 (-w) w w
    vertex $ Vertex3 w w w
    vertex $ Vertex3 w (-w) w
    vertex $ Vertex3 (-w) (-w) w
    vertex $ Vertex3 (-w) w w
    vertex $ Vertex3 (-w) w w
    vertex $ Vertex3 (-w) w (-w)
    vertex $ Vertex3 (-w) (-w) (-w)
    vertex $ Vertex3 (-w) (-w) w
    vertex $ Vertex3 w (-w) w
    vertex $ Vertex3 w (-w) (-w)
    vertex $ Vertex3 (-w) (-w) (-w)
    vertex $ Vertex3 (-w) (-w) w
    vertex $ Vertex3 w w (-w)
    vertex $ Vertex3 w (-w) (-w)
    vertex $ Vertex3 (-w) (-w) (-w)
    vertex $ Vertex3 (-w) w (-w)

Now, compiling this entire section with the command ghc --make HelloWorld.hs compiles and links each module needed, and produces an executable to be used. There we go! Much more modularized, much smaller and simpler bits and pieces. And - an added boon - we won't normally need to recompile as much for each change we do. As an alternative, you could just load HelloWorld.hs into GHCi and run it via main.

This skeletal program will look like:

A Brief Note on Actions, Clarity, and Modularity

As you may have noticed, rendering graphics in OpenGL relies extensively on actions. Some action-based rendering functions include rotate, translate, and color. When using renderPrimitive, a sequence of vertex actions is executed - one for each vertex. While working on a project, we may want to focus on lists of vertices, rather extensive quantities of actions in which our vertices are hidden. Let's take a look at how we might rewrite Cube.hs to focus on vertices.

module Cube where
 
import Graphics.UI.GLUT
 
vertex3f :: (GLfloat, GLfloat, GLfloat) -> IO ()
vertex3f (x, y, z) = vertex $ Vertex3 x y z

cube :: GLfloat -> IO ()
cube w = renderPrimitive Quads $ mapM_ vertex3f
  [ ( w, w, w), ( w, w,-w), ( w,-w,-w), ( w,-w, w),
    ( w, w, w), ( w, w,-w), (-w, w,-w), (-w, w, w),
    ( w, w, w), ( w,-w, w), (-w,-w, w), (-w, w, w),
    (-w, w, w), (-w, w,-w), (-w,-w,-w), (-w,-w, w),
    ( w,-w, w), ( w,-w,-w), (-w,-w,-w), (-w,-w, w),
    ( w, w,-w), ( w,-w,-w), (-w,-w,-w), (-w, w,-w) ]

We introduce a function vertex3f, which takes a coordinate triple and converts it into an OpenGL vertex action. Using mapM_, we can map this over a list of triples and execute the resulting actions in sequence. In the example, each row of four vertices corresponds to a single OpenGL Quad.

Local transformations

One of the core reasons I started to write this tutorial series was that I wanted to figure out why Panitz' tutorial didn't work for me. The core explanation is simple - the names of some of the functions used has changed since he wrote them. Thus, the matrixExcursion in his tutorial is nowadays named preservingMatrix. This may well change further - though I hope it won't - in which case this tutorial will be painfully out of date as well.

The idea of preservingMatrix, however, is to take a small piece of drawing actions, and perform them independent of the transformations going on outside that small piece. For demonstration, let's draw a bunch of cubes, shall we?

We'll change the rather boring display subroutine in Display.hs into one using preservingMatrix to modify each cube drawn individually, giving a new Display.hs:

module Display (display) where

import Graphics.UI.GLUT
import Control.Monad
import Cube

points :: [(GLfloat,GLfloat,GLfloat)]
points = [ (sin (2*pi*k/12), cos (2*pi*k/12), 0) | k <- [1..12] ]

display :: DisplayCallback
display = do
  clear [ColorBuffer]
  forM_ points $ \(x,y,z) ->
    preservingMatrix $ do
      color $ Color3 x y z
      translate $ Vector3 x y z
      cube 0.1
  flush

Say... Those points on the unit circle might be something we'll want more of. Let's abstract some again! We'll break them out to a Points.hs:

module Points where

import Graphics.Rendering.OpenGL

points :: Int -> [(GLfloat,GLfloat,GLfloat)]
points n = [ (sin (2*pi*k/n'), cos (2*pi*k/n'), 0) | k <- [1..n'] ]
   where n' = fromIntegral n

and then we get the Display.hs:

module Display (display) where

import Graphics.UI.GLUT
import Control.Monad
import Cube
import Points

display :: DisplayCallback
display = do
  clear [ColorBuffer]
  forM_ (points 7) $ \(x,y,z) ->
    preservingMatrix $ do
      color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
      translate $ Vector3 x y z
      cube 0.1
  flush

where we note that we need to renormalize our colours to get them within the interval [0,1] from the interval [-1,1] in order to get valid colour values. The output looks like:

The point of this yoga doesn't come apparent until you start adding some global transformations as well. So let's! We add the line

scale 0.7 0.7 (0.7::GLfloat)

just after the clear [ColorBuffer], in order to scale the entire picture. As a result, we get

We can do this with all sorts of transformations - we can rotate the picture, skew it, move the entire picture around. Using preservingMatrix, we make sure that the transformations “outside” apply in the way we'd expect them to.

Back to the callbacks

Animation

A lot of the OpenGL programming is centered around the program being prepared to launch some sequence when some event occurs. Let's use this to build a rotating version of our bunch of points up there. In order to do things over time, we're going to be using the global callbacks idleCallback and timerCallback. So, we'll modify the structure of our files a bit - starting from the top.

We'll need a new callback. And we'll also need a state variable of our own, which in turn needs to be fed to all functions that may need to use it. Incorporating these changes, we get a new HelloWorld.hs. If you are using Linux, you may want to skip ahead to the section using double buffers.

import Graphics.UI.GLUT
import Data.IORef
import Bindings

main :: IO ()
main = do
  (_progName, _args) <- getArgsAndInitialize
  _window <- createWindow "Hello World"
  reshapeCallback $= Just reshape
  keyboardMouseCallback $= Just keyboardMouse
  angle <- newIORef 0.0
  displayCallback $= display angle
  idleCallback $= Just (idle angle)
  mainLoop

Note the addition of an angle, and an idle. We need to feed the value of angle both to idle and to display, in order for them to use it accordingly. Now, we need to define idle somewhere - and since we keep all the bits and pieces we modify a LOT in display, let's put it in there.

Exporting it all the way requires us to change the first line of Bindings.hs to

module Bindings (idle, display, reshape, keyboardMouse) where

Display.hs:

module Display (idle, display) where

import Graphics.UI.GLUT
import Control.Monad
import Data.IORef
import Cube
import Points

display :: IORef GLfloat -> DisplayCallback
display angle = do
  clear [ColorBuffer]
  a <- get angle
  rotate a $ Vector3 0 0 1
  scale 0.7 0.7 (0.7::GLfloat)
  forM_ (points 7) $ \(x,y,z) ->
    preservingMatrix $ do
      color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
      translate $ Vector3 x y z
      cube 0.1
  flush

idle :: IORef GLfloat -> IdleCallback
idle angle = do
  angle $~! (+ 0.1)
  postRedisplay Nothing

Now, running this program makes a couple of different things painfully obvious. One is that things flicker. (Note: Mac OS X double-buffers internally so it does not flicker). Another is that our ring is shrinking violently. The shrinking is due to our forgetting to reset all our transformations before we apply the next, and the flicker is because we're redrawing an entire picture step by step. Much smoother animation'll be had if we use a double buffering technique. Now, this isn't at all hard. We need to modify a few places - tell HOpenGL that we want to do doublebuffering and also when we want to swap the ready drawn canvas for the one on the screen. So, we modify, again, HelloWorld.hs:

import Graphics.UI.GLUT
import Data.IORef
import Bindings

main :: IO ()
main = do
  (_progName, _args) <- getArgsAndInitialize
  initialDisplayMode $= [DoubleBuffered]
  _window <- createWindow "Hello World"
  reshapeCallback $= Just reshape
  keyboardMouseCallback $= Just keyboardMouse
  angle <- newIORef 0.0
  displayCallback $= display angle
  idleCallback $= Just (idle angle)
  mainLoop

and we also need to modify Display.hs to implement the buffer swapping. While we're at it, we add the command loadIdentity, which resets the modification matrix.

module Display (idle, display) where

import Graphics.UI.GLUT
import Control.Monad
import Data.IORef
import Cube
import Points

display :: IORef GLfloat -> DisplayCallback
display angle = do
  clear [ColorBuffer]
  loadIdentity
  a <- get angle
  rotate a $ Vector3 0 0 1
  scale 0.7 0.7 (0.7::GLfloat)
  forM_ (points 7) $ \(x,y,z) ->
    preservingMatrix $ do
      color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
      translate $ Vector3 x y z
      cube 0.1
  swapBuffers

idle :: IORef GLfloat -> IdleCallback
idle angle = do
  angle $~! (+ 0.1)
  postRedisplay Nothing

There we are! That looks pretty, doesn't it? Now, we could start adding control to the user, couldn't we? Let's add some keyboard interfaces. We'll start by letting the rotation direction change when we press spacebar, and let the arrows displace the whole figure and + and - increase/decrease the rotation speed. Again, we're adding states, so we need to modify HelloWorld.hs:

import Graphics.UI.GLUT
import Data.IORef
import Bindings

main :: IO ()
main = do
  (_progName, _args) <- getArgsAndInitialize
  initialDisplayMode $= [DoubleBuffered]
  _window <- createWindow "Hello World"
  reshapeCallback $= Just reshape
  angle <- newIORef 0
  delta <- newIORef 0.1
  pos <- newIORef (0, 0)
  keyboardMouseCallback $= Just (keyboardMouse delta pos)
  idleCallback $= Just (idle angle delta)
  displayCallback $= display angle pos
  mainLoop

Note that position is sent along to the keyboard as well as the display callbacks. And in Bindings.hs, we give the keyboard callback actual function

module Bindings (idle, display, reshape, keyboardMouse) where

import Graphics.UI.GLUT
import Data.IORef
import Display

reshape :: ReshapeCallback
reshape size = do 
  viewport $= (Position 0 0, size)

keyboardMouse :: IORef GLfloat -> IORef (GLfloat, GLfloat) -> KeyboardMouseCallback
keyboardMouse a p key Down _ _ = case key of
  (Char ' ') -> a $~! negate
  (Char '+') -> a $~! (* 2)
  (Char '-') -> a $~! (/ 2)
  (SpecialKey KeyLeft ) -> p $~! \(x,y) -> (x-0.1,y)
  (SpecialKey KeyRight) -> p $~! \(x,y) -> (x+0.1,y)
  (SpecialKey KeyUp   ) -> p $~! \(x,y) -> (x,y+0.1)
  (SpecialKey KeyDown ) -> p $~! \(x,y) -> (x,y-0.1)
  _ -> return ()
keyboardMouse _ _ _ _ _ _ = return ()

Finally, in Display.hs we use the new information to accordingly redraw the scene, specifically the now changing amount to change the current angle with. Note that in order to avoid the placement of the circle to be pulled in with all the other modifications we're doing, we do the translation outside a preservingMatrix call:

import Graphics.UI.GLUT
import Control.Monad
import Data.IORef
import Cube
import Points

display :: IORef GLfloat -> IORef (GLfloat, GLfloat) -> DisplayCallback
display angle pos = do 
  clear [ColorBuffer]
  loadIdentity
  (x',y') <- get pos
  translate $ Vector3 x' y' 0
  preservingMatrix $ do
    a <- get angle
    rotate a $ Vector3 0 0 1
    scale 0.7 0.7 (0.7::GLfloat)
    forM_ (points 7) $ \(x,y,z) -> preservingMatrix $ do
      color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
      translate $ Vector3 x y z
      cube 0.1
  swapBuffers

idle :: IORef GLfloat -> IORef GLfloat -> IdleCallback
idle angle delta = do
  d <- get delta
  angle $~! (+ d)
  postRedisplay Nothing

Adding Depth

The code we have written so far may not handle depth properly, but the program as-written won't reveal whether or not this is the case! Let's extend the example to add outlines the cubes, and add depth to the animation!

The code for the wire frame belongs in Cube.hs. We can draw a wire frame using vertex3f from above:

cubeFrame :: GLfloat -> IO ()
cubeFrame w = renderPrimitive Lines $ mapM_ vertex3f
  [ ( w,-w, w), ( w, w, w),  ( w, w, w), (-w, w, w),
    (-w, w, w), (-w,-w, w),  (-w,-w, w), ( w,-w, w),
    ( w,-w, w), ( w,-w,-w),  ( w, w, w), ( w, w,-w),
    (-w, w, w), (-w, w,-w),  (-w,-w, w), (-w,-w,-w),
    ( w,-w,-w), ( w, w,-w),  ( w, w,-w), (-w, w,-w),
    (-w, w,-w), (-w,-w,-w),  (-w,-w,-w), ( w,-w,-w) ]

If you simply call this with a unique color in your display function, you may not get the results you expect. You might see lines which should be occluded, or you might not see new lines at all. Let's take a look at how we can fix some of these problems.

The first thing we need to do is ensure that we initialize our window with a depth buffer. The depth buffer indicates the current depth of a pixel on our screen, allowing OpenGL to determine whether or not to draw over the current color. We also need to specify how our depth buffer will do this. We want things with less depth to be rendered above those with more depth, so we use the comparison function Less. We again modify the HelloWorld.hs as follows:

import Graphics.UI.GLUT
import Data.IORef
import Bindings

main :: IO ()
main = do
  (_progName, _args) <- getArgsAndInitialize
  initialDisplayMode $= [WithDepthBuffer, DoubleBuffered]
  _window <- createWindow "Hello World"
  reshapeCallback $= Just reshape
  depthFunc $= Just Less -- the comparison function for depth the buffer
  angle <- newIORef 0
  delta <- newIORef 0.1
  pos <- newIORef (0, 0)
  keyboardMouseCallback $= Just (keyboardMouse delta pos)
  idleCallback $= Just (idle angle delta)
  displayCallback $= display angle pos
  mainLoop

Lastly, we modify the Display function to have it clear the depth buffer to keep our image in order. We should also call cubeFrame to see our spiffy new outlines, and modify our axis of rotation so we can see the corners of the cubes in action!

module Display (idle, display) where

import Graphics.UI.GLUT
import Control.Monad
import Data.IORef
import Cube
import Points

display :: IORef GLfloat -> IORef (GLfloat, GLfloat) -> DisplayCallback
display angle pos = do 
  clear [ColorBuffer, DepthBuffer] -- clear depth buffer, too
  clear [ColorBuffer]
  loadIdentity
  (x',y') <- get pos
  translate $ Vector3 x' y' 0
  preservingMatrix $ do
    a <- get angle
    rotate a $ Vector3 0 0 1
    rotate a $ Vector3 0 0.1 1 -- changed y-component a bit to show off cube corners
    scale 0.7 0.7 (0.7::GLfloat)
    forM_ (points 7) $ \(x,y,z) -> preservingMatrix $ do
      color $ Color3 ((x+1)/2) ((y+1)/2) ((z+1)/2)
      translate $ Vector3 x y z
      cube 0.1
      color $ Color3 (0::GLfloat) 0 0 -- set outline color to black
      cubeFrame 0.1 -- draw the outline
  swapBuffers

idle :: IORef GLfloat -> IORef GLfloat -> IdleCallback
idle angle delta = do
  d <- get delta
  angle $~! (+ d)
  postRedisplay Nothing

The animation starts off with all the cubes facing you, so increase the speed and let it run for a bit to let the corners show up. You should now have cubes revolving around an off-center axis with outlines, showing off their corners!

Note that the code covered here allows us to add some depth to our image, but may not be sufficient to cover transparency and blending.

Summary

We now know how to modify only parts of a picture, and we also know how to use the idle and the keyboardMouse callback to support animations and keyboard input. In order to somewhat limit the amount of typing I need to do, I'll give links that give details on some of the themes we've touched upon.

First of all, the callbacks are described in more detail and with call signatures at Graphics.UI.GLUT.Callbacks.Global for the global callbacks (menu systems, and timing/idle callbacks)

See Graphics.UI.GLUT.Callbacks.Window for the window-specific callbacks (display, reshape, keyboard&mouse, visibility changes, window closing, mouse movement, spaceballs, drawing tablets, joysticks and dial&button)

Furthermore, the various primitives for drawing are listed at Graphics.Rendering.OpenGL.GL.BeginEnd.

There are 3-dimensional primitives ready as well. These can be found at Graphics.UI.GLUT.Objects.

The flag used to trigger double buffering is described among the GLUT initialization methods, see Graphics.UI.GLUT.Initialization for everything you can do there.