99 questions/Solutions/62B: Difference between revisions

From HaskellWiki
No edit summary
 
(categorize)
 
(2 intermediate revisions by 2 users not shown)
Line 4: Line 4:


<haskell>
<haskell>
atlevel :: Tree a -> Int -> [a]
atLevel :: Tree a -> Int -> [a]
atlevel t level = loop t 1
atLevel Empty _ = []
  where
atLevel (Branch v l r) n
    loop Empty _         = []
    | n == 1 = [v]
    loop (Branch a l r) n  
    | n > 1 = atlevel l (n-1) ++ atlevel r (n-1)
        | n == level = [a]
    | otherwise = []
        | otherwise = loop l (n+1) ++ loop r (n+1)
</haskell>
</haskell>


Line 20: Line 19:
levels (Branch a l r) = [a] : zipWith (++) (levels l) (levels r)
levels (Branch a l r) = [a] : zipWith (++) (levels l) (levels r)


atlevel :: Tree a -> Int -> [a]
atLevel :: Tree a -> Int -> [a]
atlevel t n = levels t !! (n-1)
atLevel t n = levels t !! (n-1)
</haskell>
</haskell>
[[Category:Programming exercise spoilers]]

Latest revision as of 13:40, 25 December 2016

Collect the nodes at a given level in a list

A node of a binary tree is at level N if the path from the root to the node has length N-1. The root node is at level 1. Write a predicate atlevel/3 to collect all nodes at a given level in a list.

atLevel :: Tree a -> Int -> [a]
atLevel Empty _ = []
atLevel (Branch v l r) n
    | n == 1 = [v]
    | n > 1  = atlevel l (n-1) ++ atlevel r (n-1)
    | otherwise = []

Another possibility is to decompose the problem:

levels :: Tree a -> [[a]]
levels Empty          = repeat []
levels (Branch a l r) = [a] : zipWith (++) (levels l) (levels r)

atLevel :: Tree a -> Int -> [a]
atLevel t n = levels t !! (n-1)