Euler problems/11 to 20: Difference between revisions

From HaskellWiki
(Added problem_19)
(→‎Problem 14: streamline code)
 
(27 intermediate revisions by 12 users not shown)
Line 1: Line 1:
[[Category:Programming exercise spoilers]]
== [http://projecteuler.net/index.php?section=problems&id=11 Problem 11] ==
== [http://projecteuler.net/index.php?section=view&id=11 Problem 11] ==
What is the greatest product of four numbers on the same straight line in the [http://projecteuler.net/index.php?section=problems&id=11 20 by 20 grid]?
What is the greatest product of four numbers on the same straight line in the [http://projecteuler.net/index.php?section=view&id=11 20 by 20 grid]?


Solution:
Solution:
<haskell>
using Array and Arrows, for fun :
import System.Process
import IO
import List
 
slurpURL url = do
    (_,out,_,_) <- runInteractiveCommand $ "curl " ++ url
    hGetContents out
   
parse_11 src =
    let npre p = or.(zipWith (/=) p)
        clip p q xs = takeWhile (npre q) $ dropWhile (npre p) xs
        trim s =
            let (x,y) = break (== '<') s
                (_,z) = break (== '>') y
            in  if null z then x else x ++ trim (tail z)
    in  map ((map read).words.trim) $ clip "08" "</p>" $ lines src
 
solve_11 xss =
    let mult w x y z = w*x*y*z
        zipf f (w,x,y,z) = zipWith4 f w x y z
        zifm = zipf mult
        zifz = zipf (zipWith4 mult)
        tupl = zipf (\w x y z -> (w,x,y,z))
        skew (w,x,y,z) = (w, drop 1 x, drop 2 y, drop 3 z)
        sker (w,x,y,z) = skew (z,y,x,w)
        skex x = skew (x,x,x,x)
        maxl = foldr1 max
        maxf f g = maxl $ map (maxl.f) $ g xss
    in  maxl
            [ maxf (zifm.skex) id
            , maxf id          (zifz.skex)
            , maxf (zifm.skew) (tupl.skex)
            , maxf (zifm.sker) (tupl.skex) ]
 
problem_11 = do
    src <- slurpURL "http://projecteuler.net/print.php?id=11"
    print $ solve_11 $ parse_11 src
</haskell>
 
Alternative, slightly easier to comprehend:
<haskell>
import Data.List (transpose)
import Data.List (tails, inits, maximumBy)
 
num = undefined --list of lists of numbers, one list per row
 
rows = num
cols = transpose rows
 
diag b = [b !! n !! n | n <- [0 .. length b - 1], n < (length (transpose b))]
 
diagLs = diag rows : diagup ++ diagdown
where diagup = getAllDiags diag rows
diagdown = getAllDiags diag cols
 
diagRs = diag (reverse rows) : diagup ++ diagdown
where diagup = getAllDiags diag (reverse num)
diagdown = getAllDiags diag (transpose $ reverse num)
 
getAllDiags f g = map f [drop n . take (length g) $ g | n <- [1.. (length g - 1)]]
 
allposs = rows ++ cols ++ diagLs ++ diagRs
allfours = [x | xss <- allposs, xs <- inits xss, x <- tails xs, length x == 4]
 
answer = maximumBy (\(x, _) (y, _) -> compare x y) (zip (map product allfours) allfours)
</haskell>
 
Second alternative, using Array and Arrows, for fun :
<haskell>
<haskell>
import Control.Arrow
import Control.Arrow
Line 85: Line 16:


prods :: Array (Int, Int) Int -> [Int]
prods :: Array (Int, Int) Int -> [Int]
prods a = [product xs |  
prods a = [product xs | i <- range $ bounds a,
          i <- range $ bounds a
                        s <- senses,
          , s <- senses
                        let is = take 4 $ iterate s i,
          , let is = take 4 $ iterate s i
                        all (inArray a) is,
          , all (inArray a) is
                        let xs = map (a!) is]
          , let xs = map (a!) is
main = print . maximum . prods . input =<< getContents
          ]
 
main = getContents >>= print . maximum . prods . input
</haskell>
</haskell>


== [http://projecteuler.net/index.php?section=view&id=12 Problem 12] ==
== [http://projecteuler.net/index.php?section=problems&id=12 Problem 12] ==
What is the first triangle number to have over five-hundred divisors?
What is the first triangle number to have over five-hundred divisors?


Solution:
Solution:
<haskell>
<haskell>
--primeFactors in problem_3
problem_12 = head $ filter ((> 500) . nDivisors) triangleNumbers
problem_12 = head $ filter ((> 500) . nDivisors) triangleNumbers
    where triangleNumbers = scanl1 (+) [1..]
  where nDivisors n = product $ map ((+1) . length) (group (primeFactors n))  
          nDivisors n     = product $ map ((+1) . length) (group (primeFactors n))
        triangleNumbers = scanl1 (+) [1..]
          primes          = 2 : filter ((== 1) . length . primeFactors) [3,5..]
          primeFactors n  = factor n primes
              where factor n (p:ps) | p*p > n        = [n]
                                    | n `mod` p == 0 = p : factor (n `div` p) (p:ps)
                                    | otherwise      = factor n ps
</haskell>
</haskell>


== [http://projecteuler.net/index.php?section=view&id=13 Problem 13] ==
== [http://projecteuler.net/index.php?section=problems&id=13 Problem 13] ==
Find the first ten digits of the sum of one-hundred 50-digit numbers.
Find the first ten digits of the sum of one-hundred 50-digit numbers.


Solution:
Solution:
<haskell>
<haskell>
nums = ... -- put the numbers in a list
 
problem_13 = take 10 . show . sum $ nums
main = do xs <- fmap (map read . lines) (readFile "p13.log")
          print . take 10 . show . sum $ xs
</haskell>
</haskell>


== [http://projecteuler.net/index.php?section=view&id=14 Problem 14] ==
== [http://projecteuler.net/index.php?section=problems&id=14 Problem 14] ==
Find the longest sequence using a starting number under one million.
Find the longest sequence using a starting number under one million.


Solution:
Solution:
<haskell> 
import Data.List 
problem_14 = j 1000000 where 
f :: Int -> Integer -> Int 
f k 1 = k 
f k n = f (k+1) $ if even n then div n 2 else 3*n + 1 
g x y = if snd x < snd y then y else x 
h x n = g x (n, f 1 n) 
j n = fst $ foldl' h (1,1) [2..n-1] 
</haskell>
Faster solution, using unboxed types and parallel computation:
<haskell>
<haskell>
p14s :: Integer -> [Integer]
import Control.Parallel
p14s n = n : p14s' n
import Data.Word
  where p14s' n = if n' == 1 then [1] else n' : p14s' n'
 
          where n' = if even n then n `div` 2 else (3*n)+1
collatzLen :: Int -> Word32 -> Int
collatzLen c 1 = c
collatzLen c n = collatzLen (c+1) $ if n `mod` 2 == 0 then n `div` 2 else 3*n+1
 
pmax x n = x `max` (collatzLen 1 n, n)
 
solve xs = foldl pmax (1,1) xs


problem_14 = fst $ head $ sortBy (\(_,x) (_,y) -> compare y x) [(x, length $ p14s x) | x <- [1 .. 999999]]
main = print soln
    where
        s1 = solve [2..500000]
        s2 = solve [500001..1000000]
        soln = s2 `par` (s1 `pseq` max s1 s2)
</haskell>
</haskell>


Alternate solution, illustrating use of strict folding:
Even faster solution, using an Array to memoize length of sequences :
 
<haskell>
<haskell>
import Data.Array
import Data.List
import Data.List
import Data.Ord (comparing)
syrs n =
    a
    where
    a = listArray (1,n) $ 0 : map syr [2..n]
    syr x =
        if y <= n then 1 + a ! y else 1 + syr y
        where
        y = if even x then x `div` 2 else 3 * x + 1


problem_14 = j 1000000 where
main =  
     f :: Int -> Integer -> Int
     print . maximumBy (comparing snd) . assocs . syrs $ 1000000
    f k 1 = k
    f k n = f (k+1) $ if even n then div n 2 else 3*n + 1
    g x y = if snd x < snd y then y else x
    h x n = g x (n, f 1 n)
    j n  = fst $ foldl' h (1,1) [2..n-1]
</haskell>
</haskell>


Faster solution, using an Array to memoize length of sequences :
<!--
This is a trivial solution without any memoization, right?
 
Using a list to memoize the lengths
 
<haskell>
<haskell>
import Data.Array
import Data.List
import Data.List


syrs n = a
-- computes the sequence for a given n
    where a = listArray (1,n) $ 0:[1 + syr n x | x <- [2..n]]
l n = n:unfoldr f n where
          syr n x = if x' <= n then a ! x' else 1 + syr n x'
    f 1 = Nothing -- we're done here
              where x' = if even x then x `div` 2 else 3 * x + 1
        -- for reasons of speed we do div and mod in one go
    f n = let (d,m)=divMod n 2 in case m of
            0 -> Just (d,d) -- n was even
            otherwise -> let k = 3*n+1 in Just (k,k) -- n was odd


main = print $ foldl' maxBySnd (0,0) $ assocs $ syrs 1000000
 
    where maxBySnd x@(_,a) y@(_,b) = if a > b then x else y
answer = foldl1' f $ -- computes the maximum of a list of tuples
    -- save the length of the sequence and the number generating it in a tuple
    [(length $! l x, x) | x <- [1..1000000]] where
        f (a,c) (b,d) -- one tuple is greater than other if the first component (=sequence-length) is greater
            | a > b = (a,c)
            | otherwise = (b,d)
 
main = print answer
</haskell>
</haskell>
-->


== [http://projecteuler.net/index.php?section=view&id=15 Problem 15] ==
== [http://projecteuler.net/index.php?section=problems&id=15 Problem 15] ==
Starting in the top left corner in a 20 by 20 grid, how many routes are there to the bottom right corner?
Starting in the top left corner in a 20 by 20 grid, how many routes are there to the bottom right corner?


Solution:
Solution:
A direct computation:
<haskell> 
problem_15 = iterate (scanl1 (+)) (repeat 1) !! 20 !! 20 
</haskell>
Thinking about it as a problem in combinatorics:
Each route has exactly 40 steps, with 20 of them horizontal and 20 of
them vertical. We need to count how many different ways there are of
choosing which steps are horizontal and which are vertical. So we have:
<haskell>
<haskell>
problem_15 = iterate (scanl1 (+)) (repeat 1) !! 20 !! 20
problem_15 = product [21..40] `div` product [2..20]
</haskell>
</haskell>


 
== [http://projecteuler.net/index.php?section=problems&id=16 Problem 16] ==
== [http://projecteuler.net/index.php?section=view&id=16 Problem 16] ==
What is the sum of the digits of the number 2<sup>1000</sup>?
What is the sum of the digits of the number 2<sup>1000</sup>?


Solution:
Solution:
<haskell>
<haskell>
problem_16 = sum.(map (read.(:[]))).show $ 2^1000
import Data.Char
problem_16 = sum k
  where s = show (2^1000)
        k = map digitToInt s
</haskell>
</haskell>


== [http://projecteuler.net/index.php?section=view&id=17 Problem 17] ==
== [http://projecteuler.net/index.php?section=problems&id=17 Problem 17] ==
How many letters would be needed to write all the numbers in words from 1 to 1000?
How many letters would be needed to write all the numbers in words from 1 to 1000?


Solution:
Solution:
<haskell>
<haskell>
-- not a very concise or beautiful solution, but food for improvements :)
import Char


names = concat $
one = ["one","two","three","four","five","six","seven","eight",
  [zip  [(0, n) | n <- [0..19]]
    "nine","ten","eleven","twelve","thirteen","fourteen","fifteen",
        ["", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight"
    "sixteen","seventeen","eighteen", "nineteen"]
        ,"Nine", "Ten", "Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen"
ty = ["twenty","thirty","forty","fifty","sixty","seventy","eighty","ninety"]
        ,"Sixteen", "Seventeen", "Eighteen", "Nineteen"]
  ,zip  [(1, n) | n <- [0..9]]
        ["", "Ten", "Twenty", "Thirty", "Fourty", "Fifty", "Sixty", "Seventy"
        ,"Eighty", "Ninety"]
  ,[((2,0), "")]
  ,[((2, n), look (0,n) ++ " Hundred and") | n <- [1..9]]
  ,[((3,0), "")]
  ,[((3, n), look (0,n) ++ " Thousand") | n <- [1..9]]]


look n = fromJust . lookup n $ names
decompose x
    | x == 0                      = []
    | x < 20                      = one !! (x-1)
    | x >= 20 && x < 100          =
        ty !! (firstDigit (x) - 2) ++ decompose ( x - firstDigit (x) * 10)
    | x < 1000 && x `mod` 100 ==0  =
        one !! (firstDigit (x)-1) ++ "hundred"
    | x > 100 && x <= 999          =
        one !! (firstDigit (x)-1) ++ "hundredand" ++decompose ( x - firstDigit (x) * 100)
    | x == 1000                    = "onethousand"


spell n = unwords $ if last s == "and" then init s else s
   where firstDigit x = digitToInt . head . show $ x
   where
    s    = words . unwords $ map look digs'
    digs  = reverse . zip [0..] . reverse . map digitToInt . show $ n
    digs' = case lookup 1 digs of
                Just 1  ->
                  let [ten,one] = filter (\(a,_) -> a<=1) digs in
                      (digs \\ [ten,one]) ++ [(0,(snd ten)*10+(snd one))]
                otherwise -> digs


problem_17 xs = sum . map (length . filter (`notElem` " -") . spell) $ xs
problem_17 = length . concatMap decompose $ [1..1000]
</haskell>
</haskell>


== [http://projecteuler.net/index.php?section=view&id=18 Problem 18] ==
== [http://projecteuler.net/index.php?section=problems&id=18 Problem 18] ==
Find the maximum sum travelling from the top of the triangle to the base.
Find the maximum sum travelling from the top of the triangle to the base.


Solution:
Solution:
<haskell>
<haskell>
problem_18 = head $ foldr1 g tri where
problem_18 = head $ foldr1 g tri  
  where
     f x y z = x + max y z
     f x y z = x + max y z
     g xs ys = zipWith3 f xs ys $ tail ys
     g xs ys = zipWith3 f xs ys $ tail ys
Line 239: Line 213:
</haskell>
</haskell>


== [http://projecteuler.net/index.php?section=view&id=19 Problem 19] ==
== [http://projecteuler.net/index.php?section=problems&id=19 Problem 19] ==
You are given the following information, but you may prefer to do some research for yourself.
You are given the following information, but you may prefer to do some research for yourself.
* 1 Jan 1900 was a Monday.
* 1 Jan 1900 was a Monday.
Line 250: Line 224:
* A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400.
* A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400.


How many Sundays fell on the first of the month during the twentieth century?
How many Sundays fell on the first of the month during the twentieth century
(1 Jan 1901 to 31 Dec 2000)?


Solution:
Solution:
<haskell>
<haskell>
problem_19 = length $ filter (== sunday) $ take 1200 since1900
problem_19 = length . filter (== sunday) . drop 12 . take 1212 $ since1900
since1900 = scanl nextMonth monday $ concat $
since1900 = scanl nextMonth monday . concat $
            replicate 4 nonLeap ++ cycle (leap : replicate 3 nonLeap)
              replicate 4 nonLeap ++ cycle (leap : replicate 3 nonLeap)
 
nonLeap = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
nonLeap = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
leap = 31 : 29 : drop 2 nonLeap
leap = 31 : 29 : drop 2 nonLeap
nextMonth x y = (x + y) `mod` 7
nextMonth x y = (x + y) `mod` 7
sunday = 0
sunday = 0
monday = 1
monday = 1
</haskell>
</haskell>


== [http://projecteuler.net/index.php?section=view&id=20 Problem 20] ==
Here is an alternative that is simpler, but it is cheating a bit:
Find the sum of digits in 100!


Solution:
<haskell>
<haskell>
problem_20 = let fac n = product [1..n] in
import Data.Time.Calendar
            foldr ((+) . Data.Char.digitToInt) 0 $ show $ fac 100
import Data.Time.Calendar.WeekDate
 
problem_19_v2 = length [() | y <- [1901..2000],
                            m <- [1..12],
                            let (_, _, d) = toWeekDate $ fromGregorian y m 1,
                            d == 7]
</haskell>
</haskell>


Alternate solution, summing digits directly, which is faster than the show, digitToInt route.
== [http://projecteuler.net/index.php?section=problems&id=20 Problem 20] ==
Find the sum of digits in 100!


Solution:
<haskell>
<haskell>
dsum 0 = 0
problem_20 = sum $ map Char.digitToInt $ show $ product [1..100]
dsum n = let ( d, m ) = n `divMod` 10 in m + ( dsum d )
 
problem_20' = dsum . product $ [ 1 .. 100 ]
</haskell>
</haskell>
[[Category:Tutorials]]
[[Category:Code]]

Latest revision as of 15:16, 16 September 2015

Problem 11

What is the greatest product of four numbers on the same straight line in the 20 by 20 grid?

Solution: using Array and Arrows, for fun :

import Control.Arrow
import Data.Array

input :: String -> Array (Int,Int) Int
input = listArray ((1,1),(20,20)) . map read . words

senses = [(+1) *** id,(+1) *** (+1), id *** (+1), (+1) *** (\n -> n - 1)]

inArray a i = inRange (bounds a) i

prods :: Array (Int, Int) Int -> [Int]
prods a = [product xs | i <- range $ bounds a,
                        s <- senses,
                        let is = take 4 $ iterate s i,
                        all (inArray a) is,
                        let xs = map (a!) is]
main = print . maximum . prods . input =<< getContents

Problem 12

What is the first triangle number to have over five-hundred divisors?

Solution:

--primeFactors in problem_3
problem_12 = head $ filter ((> 500) . nDivisors) triangleNumbers
  where nDivisors n = product $ map ((+1) . length) (group (primeFactors n))    
        triangleNumbers = scanl1 (+) [1..]

Problem 13

Find the first ten digits of the sum of one-hundred 50-digit numbers.

Solution:

main = do xs <- fmap (map read . lines) (readFile "p13.log")
          print . take 10 . show . sum $ xs

Problem 14

Find the longest sequence using a starting number under one million.

Solution:

   
import Data.List   

problem_14 = j 1000000 where   
f :: Int -> Integer -> Int   
f k 1 = k   
f k n = f (k+1) $ if even n then div n 2 else 3*n + 1   
g x y = if snd x < snd y then y else x   
h x n = g x (n, f 1 n)   
j n = fst $ foldl' h (1,1) [2..n-1]

Faster solution, using unboxed types and parallel computation:

import Control.Parallel
import Data.Word

collatzLen :: Int -> Word32 -> Int
collatzLen c 1 = c
collatzLen c n = collatzLen (c+1) $ if n `mod` 2 == 0 then n `div` 2 else 3*n+1

pmax x n = x `max` (collatzLen 1 n, n)

solve xs = foldl pmax (1,1) xs

main = print soln
    where
        s1 = solve [2..500000]
        s2 = solve [500001..1000000]
        soln = s2 `par` (s1 `pseq` max s1 s2)

Even faster solution, using an Array to memoize length of sequences :

import Data.Array
import Data.List
import Data.Ord (comparing)

syrs n = 
    a
    where 
    a = listArray (1,n) $ 0 : map syr [2..n]
    syr x = 
        if y <= n then 1 + a ! y else 1 + syr y
        where 
        y = if even x then x `div` 2 else 3 * x + 1

main = 
    print . maximumBy (comparing snd) . assocs . syrs $ 1000000


Problem 15

Starting in the top left corner in a 20 by 20 grid, how many routes are there to the bottom right corner?

Solution: A direct computation:

   
problem_15 = iterate (scanl1 (+)) (repeat 1) !! 20 !! 20

Thinking about it as a problem in combinatorics:

Each route has exactly 40 steps, with 20 of them horizontal and 20 of them vertical. We need to count how many different ways there are of choosing which steps are horizontal and which are vertical. So we have:

problem_15 = product [21..40] `div` product [2..20]

Problem 16

What is the sum of the digits of the number 21000?

Solution:

import Data.Char
problem_16 = sum k
  where s = show (2^1000)
        k = map digitToInt s

Problem 17

How many letters would be needed to write all the numbers in words from 1 to 1000?

Solution:

import Char

one = ["one","two","three","four","five","six","seven","eight",
     "nine","ten","eleven","twelve","thirteen","fourteen","fifteen",
     "sixteen","seventeen","eighteen", "nineteen"]
ty = ["twenty","thirty","forty","fifty","sixty","seventy","eighty","ninety"]

decompose x 
    | x == 0                       = []
    | x < 20                       = one !! (x-1)
    | x >= 20 && x < 100           = 
        ty !! (firstDigit (x) - 2) ++ decompose ( x - firstDigit (x) * 10)
    | x < 1000 && x `mod` 100 ==0  = 
        one !! (firstDigit (x)-1) ++ "hundred"
    | x > 100 && x <= 999          = 
        one !! (firstDigit (x)-1) ++ "hundredand" ++decompose ( x - firstDigit (x) * 100)
    | x == 1000                    = "onethousand"

  where firstDigit x = digitToInt . head . show $ x

problem_17 = length . concatMap decompose $ [1..1000]

Problem 18

Find the maximum sum travelling from the top of the triangle to the base.

Solution:

problem_18 = head $ foldr1 g tri 
  where
    f x y z = x + max y z
    g xs ys = zipWith3 f xs ys $ tail ys
    tri = [
        [75],
        [95,64],
        [17,47,82],
        [18,35,87,10],
        [20,04,82,47,65],
        [19,01,23,75,03,34],
        [88,02,77,73,07,63,67],
        [99,65,04,28,06,16,70,92],
        [41,41,26,56,83,40,80,70,33],
        [41,48,72,33,47,32,37,16,94,29],
        [53,71,44,65,25,43,91,52,97,51,14],
        [70,11,33,28,77,73,17,78,39,68,17,57],
        [91,71,52,38,17,14,91,43,58,50,27,29,48],
        [63,66,04,68,89,53,67,30,73,16,69,87,40,31],
        [04,62,98,27,23,09,70,98,73,93,38,53,60,04,23]]

Problem 19

You are given the following information, but you may prefer to do some research for yourself.

  • 1 Jan 1900 was a Monday.
  • Thirty days has September,
  • April, June and November.
  • All the rest have thirty-one,
  • Saving February alone,

Which has twenty-eight, rain or shine. And on leap years, twenty-nine.

  • A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400.

How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?

Solution:

problem_19 =  length . filter (== sunday) . drop 12 . take 1212 $ since1900
since1900 = scanl nextMonth monday . concat $
              replicate 4 nonLeap ++ cycle (leap : replicate 3 nonLeap)

nonLeap = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

leap = 31 : 29 : drop 2 nonLeap

nextMonth x y = (x + y) `mod` 7

sunday = 0
monday = 1

Here is an alternative that is simpler, but it is cheating a bit:

import Data.Time.Calendar
import Data.Time.Calendar.WeekDate

problem_19_v2 = length [() | y <- [1901..2000], 
                             m <- [1..12],
                             let (_, _, d) = toWeekDate $ fromGregorian y m 1,
                             d == 7]

Problem 20

Find the sum of digits in 100!

Solution:

problem_20 = sum $ map Char.digitToInt $ show $ product [1..100]