Euler problems/141 to 150

From HaskellWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Problem 141

Investigating progressive numbers, n, which are also square.

Solution:

import Data.List
intSqrt :: Integral a => a -> a
intSqrt n
    | n < 0 = error "intSqrt: negative n"
    | otherwise = f n
    where
        f x = if y < x then f y else x
            where y = (x + (n `quot` x)) `quot` 2
isSqrt n = n==((^2).intSqrt) n
takec a b =
    two++takeWhile (<=e12) 
    [sq| c1<-[1..], let c=c1*c1,let sq=(c^2*a^3*b+b^2*c) ]
    where
    e12=10^12
    two=[sq|c<-[b,2*b],let sq=(c^2*a^3*b+b^2*c) ]
problem_141=
    sum$nub[c|
    (a,b)<-takeWhile (\(a,b)->a^3*b+b^2<e12) 
        [(a,b)|
        a<-[2..e4],
        b<-[1..(a-1)]
        ],
    gcd a b==1,
    c<-takec a b,
    isSqrt c
    ]
    where
    e4=120
    e12=10^12

Problem 142

Perfect Square Collection

Solution:

import List
isSquare n = (round . sqrt $ fromIntegral n) ^ 2 == n
aToX (a,b,c)=[x,y,z]
    where
    x=(a+b)`div`2
    y=(a-b)`div`2
    z=c-x
{-
 -                                2    2    2
 -                               a  = c  + d
 -                                2    2    2
 -                               a  = e  + f
 -                                2    2    2
 -                               c  = e  + b
 -   let b=x*y  then 
 -                                             (y + xb)
 -                                          c= ---------
 -                                                 2
 -                                             (-y + xb)
 -                                          e= ---------
 -                                                 2
 -                                             (-x + yb)
 -                                          d= ---------
 -                                                 2
 -                                             (x + yb)
 -                                          f= ---------
 -                                                 2
 -
 - and 
 -                                2    2    2
 -                               a  = c  + d
 - then 
 -                                   2    2    2  2
 -                              2  (y  + x ) (x  y  + 1)
 -                             a = ---------------------
 -                                           4
 -
 -}
problem_142 = sum$head[aToX(t,t2 ,t3)|
    a<-[3,5..50],
    b<-[(a+2),(a+4)..50],
    let a2=a^2,
    let b2=b^2,
    let n=(a2+b2)*(a2*b2+1),
    isSquare n,
    let t=n`div`4,
    let t2=a2*b2,
    let t3=(a2*(b2+1)^2)`div`4
    ]

Problem 143

Investigating the Torricelli point of a triangle

Problem 144

Investigating multiple reflections of a laser beam.

Solution:

type Point = (Double, Double)
type Vector = (Double, Double)
type Normal = (Double, Double)
 
sub :: Vector -> Vector -> Vector
sub (x,y) (a,b) = (x-a, y-b)
 
mull :: Double -> Vector -> Vector
mull s (x,y) = (s*x, s*y)
 
mulr :: Vector -> Double -> Vector
mulr v s = mull s v
 
dot :: Vector -> Vector -> Double
dot (x,y) (a,b) = x*a + y*b
 
normSq :: Vector -> Double
normSq v = dot v v
 
normalize :: Vector -> Vector
normalize v 
    |len /= 0 =mulr v (1.0/len)
    |otherwise=error "Vettore nullo.\n"  
    where
    len = (sqrt . normSq) v 
 
proj :: Vector -> Vector -> Vector
proj a b = mull ((dot a b)/normSq b) b

reflect :: Vector -> Normal -> Vector
reflect i n = sub i $ mulr (proj i n) 2.0
 
type Ray = (Point, Vector)
 
makeRay :: Point -> Vector -> Ray
makeRay p v = (p, v)
 
getPoint :: Ray -> Double -> Point
getPoint ((px,py),(vx,vy)) t = (px + t*vx, py + t*vy)
 
type Ellipse = (Double, Double)
 
getNormal :: Ellipse -> Point -> Normal
getNormal (a,b) (x,y) = ((-b/a)*x, (-a/b)*y)

rayFromPoint :: Ellipse -> Vector -> Point -> Ray
rayFromPoint e v p = makeRay p (reflect v (getNormal e p))
 
test :: Point -> Bool
test (x,y) = y > 0 && x >= -0.01 && x <= 0.01
 
intersect :: Ellipse -> Ray -> Point
intersect (e@(a,b)) (r@((px,py),(vx,vy))) =
    getPoint r t1
    where
    c0 = normSq (vx/a, vy/b)
    c1 = 2.0 * dot (vx/a, vy/b) (px/a, py/b)
    c2 = (normSq (px/a, py/b)) - 1.0
    (t0, t1) = quadratic c0 c1 c2 
 
quadratic :: Double -> Double -> Double -> (Double, Double)
quadratic a b c  
    |d < 0= error "Discriminante minore di zero"
    |otherwise= if (t0 < t1) then (t0, t1) else (t1, t0)
    where
    d = b * b - 4.0 * a * c
    sqrtD = sqrt d
    q = if b < 0 then -0.5*(b - sqrtD) else 0.5*(b + sqrtD)
    t0 = q / a
    t1 = c / q 
 
calculate :: Ellipse -> Ray -> Int -> IO ()
calculate e (r@(o,d)) n 
    |test p=print n 
    |otherwise=do
         putStrLn $ "\rHit " ++ show n
         calculate e (rayFromPoint e d p) (n+1)
    where
    p = intersect e r 
 
origin = (0.0,10.1)
direction = sub (1.4,-9.6) origin
ellipse = (5.0,10.0)
 
problem_144 = do
    calculate ellipse (makeRay origin direction) 0

Problem 145

How many reversible numbers are there below one-billion?

Solution:

import List

digits n 
{-  123->[3,2,1]
 -}
    |n<10=[n]
    |otherwise= y:digits x 
    where
    (x,y)=divMod n 10
-- 123 ->321
dmm=(\x y->x*10+y)
palind n=foldl dmm 0 (digits n) 

isOdd x=(length$takeWhile odd x)==(length x)
isOdig x=isOdd m && s<=h
    where
    k=x+palind x
    m=digits k
    y=floor$logBase 10 $fromInteger x
    ten=10^y
    s=x`mod`10
    h=x`div`ten

a2=[i|i<-[10..99],isOdig i]
aa2=[i|i<-[10..99],isOdig i,mod i 10/=0]
a3=[i|i<-[100..999],isOdig i]
m5=[i|i1<-[0..99],i2<-[0..99],
      let i3=i1*1000+3*100+i2,
      let i=10^6*   8+i3*10+5,
      isOdig i
   ]

fun i
    |i==2  =2*le aa2
    |even i=(fun 2)*d^(m-1)
    |i==3  =2*le a3
    |i==7  =fun 3*le m5
    |otherwise=0
    where
    le=length
    m=div i 2
    d=2*le a2

problem_145 = sum[fun a|a<-[1..9]]

Problem 146

Investigating a Prime Pattern

Solution:

import List
isPrime x=millerRabinPrimality x 2
--isPrime x=all (millerRabinPrimality x) [2,3,7,61,24251]
six=[1,3,7,9,13,27]
allPrime x=all (\a -> isPrime (x^2+a)) six
linkPrime [x]=filterPrime x
linkPrime (x:xs)=[y|
    a<-linkPrime xs,
    b<-[0..(x-1)],
    let y=b*prxs+a,
    let c=y`mod`x,
    elem c d]
    where
    prxs=product xs
    d=filterPrime x

filterPrime p=
    [a|
    a<-[0..(p-1)],
    length[b|b<-six,(a^2+b)`mod`p/=0]==6
    ]
testPrimes=[2,3,5,7,11,13,17,23]
primes=[2,3,5,7,11,13,17,23,29]
test =
    sum[y|
    y<-linkPrime testPrimes,
    y<1000000,
    allPrime (y)
    ]==1242490
p146 =[y|y<-linkPrime primes,y<150000000,allPrime y]
problem_146=[a|a<-p146, allNext a]
allNext x=
    sum [1|(x,y)<-zip a b,x==y]==6
    where
    a=[x^2+b|b<-six]
    b=head a:map nextPrime a
nextPrime x=head [a|a<-[(x+1)..],isPrime a]
main=writeFile "p146.log" $show $sum problem_146

Problem 147

Rectangles in cross-hatched grids

Problem 148

Exploring Pascal's triangle.

Solution:

triangel 0 = 0
triangel n 
    |n <7 =n+triangel (n-1)  
    |n==k7 =28^k 
    |otherwise=(triangel i) + j*(triangel (n-i))
    where
    i=k7*((n-1)`div`k7)
    j= -(n`div`(-k7))
    k7=7^k
    k=floor . logBase 7 . fromIntegral $ n
problem_148=triangel (10^9)

Problem 149

Searching for a maximum-sum subsequence.

Solution:

import Data.Array
import Data.List (foldl')
 
n = 2000
 
res = maximum' $ concat [rows, cols, diags, diags']
    where
        rows   = map (maxSumInRow . getRow   laggedFibArray) [0 .. n-1]
        cols   = map (maxSumInRow . getCol   laggedFibArray) [0 .. n-1]
        diags  = map (maxSumInRow . getDiag  laggedFibArray) [-(n-2) .. (n-2)]
        diags' = map (maxSumInRow . getDiag' laggedFibArray) [-(n-2) .. (n-2)]
 
 
laggedFibArray :: Array Integer Integer
laggedFibArray = listArray (0, n^2-1) $ map f [1..n^2]
    where
        f k = norm $ if k < 56
              then 100003 - (200003*k) + (300007*(k^3))
              else (laggedFibArray ! (k-25)) + (laggedFibArray ! (k-56)) + (10^6)
 
        norm x = mod x (10^6) - 500000
 
 
getRow   a i = map (a!) [i*n .. (i+1)*n-1]
getCol   a i = map (a!) [i,n+i .. n*(n-1)+i]
getDiag  a i = map (a!) $
    if i >= 0
    then [(i*n) + (k*(n+1)) | k <- [0..n-i-1]]
    else [k + n*(k+i) | k <- [-i .. n-1]]
getDiag' a i = map (a!) $
    if i >= 0
    then [(n*k) + n-k-i-1 | k <- [0..n-i-1]]
    else [n*(k-i) + n-k-1 | k <- [0..n+i-1]]
 
 
maxSumInRow = snd . foldl' f (0,0)
    where
        f (line_sum, line_max) x = (line_sum', max line_max line_sum')
            where line_sum' = max (line_sum+x) 0

-- strict version of maximum
maximum' (x:xs) = foldl' max x xs

main = print res

Problem 150

Searching a triangular array for a sub-triangle having minimum-sum.