From HaskellWiki
Revision as of 14:38, 6 December 2009 by Ymotongpoo (talk | contribs)
Jump to: navigation, search

Haskellでは とはプログラム内で用いるデータを表現するものです。



data [context =>] type tv1 ... tvi = con1  c1t1 c1c2... c1tn |
                      ... | conm cmt1 ... cmtq


上の宣言の本質は、dataキーワードを使って、付属的なコンテキストを与え、型の名前と多くのtype variableを与えることにあります。 その後、多くのconstructorが続きます。これらはtype variabletype constantのリストになっています。最後に付属的にderivingが続きます。



 data Maybe a = Just a | Nothing

これは、Maybe型はaで表される1つの型変数を持っていて、JustNothingという2つのconstructorを持っているということを意味しています。(Haskellでは型名とコンストラクタ名は大文字で始まらなければいけないことに注意してください) Justコンストラクタは1つのパラメータ"a"をとります。

他の例として、二分木 (binary Tree)を考えてみましょう。このように表されます。

 data Tree a = Branch (Tree a) (Tree a) | Leaf a



The other two ways one may introduce types to Haskell programs are via the type and newtype statements.

type introduces a synonym for a type and uses the same data constructors. newtype introduces a renaming of a type and requires you to provide new constructors.

When using a type declaration, the type synonym and its base type are interchangeble almost everywhere (There are some restrictions when dealing with instance declarations). For example, if you had the declaration:

 type Name = String

then any function you had declared that had String in its signature could be used on any element of type Name

However, if one had the declaration:

  newtype FirstName = FirstName String

this would no longer be the case. Functions would have to be declared that actually were defined on FirstName. Often, one creates a deconstructor at the same time which helps alleviate this requirement. e.g.:

  unFirstName :: FirstName -> String
  unFirstName (FirstName s) = s

This is often done by the use of fields in the newtype. (Note that many consider the Haskell field implementation sub-optimal, while others use it extensively. See Programming guidelines and Future of Haskell)


Suppose you want to create a program to play bridge. You need something to represent cards. Here is one way to do that.

First, create data types for the suit and card number.

 data Suit = Club | Diamond | Heart | Spade
     deriving (Read, Show, Enum, Eq, Ord)

 data CardValue = Two | Three | Four
     | Five | Six | Seven | Eight | Nine | Ten 
     | Jack | Queen | King | Ace
    deriving (Read,  Show, Enum, Eq, Ord)

Each of these uses a deriving clause to allow us to convert them from / to String and Int, test them for equality and ordering. With types like this, where there are no type variables, equality is based upon which constructor is used and order by the order you wrote them. e.g. Three is less than Queen.

Now we define an actual Card

 data Card = Card {value::CardValue, 
    deriving (Read, Show, Eq)

In this definition, we use fields, which give us ready made functions to access the two parts of a Card. Again, type variables were not used, but the data constructor requires its two parameters to be of specific types, CardValue and Suit.

The deriving clause here only specifies three of our desired Classes, we supply instance declarations for Ord and Enum.

 instance Ord Card where
      compare c1 c2  | (value c1 == (value c2)) = compare (suit c1) (suit c2)
                     | otherwise = compare (value c1) (value c2)

 instance Enum Card where
      toEnum n = Card (toEnum (n `div` 4)) (toEnum (n `mod` 4))
      fromEnum c =  4*(fromEnum (value c)) + (fromEnum (suit c))

Finally, we alias the type Deck to a list of Cards and populate the deck with a list comprehension

 type Deck = [Card]

 deck = [Card val su | val <- [Two .. Ace], su <- [Club .. Spade]]


Further illustrative examples would be most appreciated.


Read the (wanted) articles about data constructors and classes. As well the Haskell 98 report and your chosen implementation (e.g. GHC/Documentation) have the latest words.

Languages: en