Cookbook/Lists and strings

From HaskellWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Lists

In Haskell, lists are what Arrays are in most other languages.

Creating simple lists

Problem Solution Examples
creating a list with given elements -
3 : 12 : 42 : []        --> [3,12,42]
'f' : 'o' : 'o' : []    --> "foo"
creating a list with stepsize 1 -
[1..10]                 --> [1,2,3,4,5,6,7,8,9,10]
['a'..'z']              --> "abcdefghijklmnopqrstuvwxyz"
creating a list with different stepsize -
[1,3..10]               --> [1,3,5,7,9]
['a','c'..'z']          --> "acegikmoqsuwy"
creating an infinite constant list -
[1,1..]                   --> [1,1,1,1,1,...
creating an infinite list with stepsize 1 -
[1..]                 --> [1,2,3,4,5,...

List comprehensions

The list of all squares can also be written in a more comprehensive way, using list comprehensions:

squares = [x*x | x <- [1..]]

List comprehensions allow for constraints as well:

-- multiples of 3 or 5
mults = [ x | x <- [1..], mod x 3 == 0 || mod x 5 == 0 ]


Combining lists

Problem Solution Examples
combining two lists (++)
"foo" ++ "bar"                  --> "foobar"
[42,43] ++ [60,61]              --> [42,43,60,61]
combining many lists concat
concat ["foo", "bar", "baz"]    --> "foobarbaz"

Accessing sublists

Problem Solution Examples
accessing the first element head
head "foo bar baz"      --> 'f'
accessing the last element last
last "foo bar baz"      --> 'z'
accessing the element at a given index (!!)
"foo bar baz" !! 4      --> 'b'
accessing the first n elements take
take 3 "foo bar baz"    --> "foo"
accessing the last n elements reverse , take
reverse . take 3 . reverse $ "foobar"    --> "bar"
accessing the n elements starting from index m drop, take
take 4 $ drop 2 "foo bar baz"            --> "o ba"

Splitting lists

Problem Solution Examples
splitting a string into a list of words words
words "foo bar\t baz\n"    --> ["foo","bar","baz"]
splitting a list into two parts splitAt
splitAt 3 "foo bar baz"    --> ("foo"," bar baz")

Strings

Since strings are lists of characters, you can use any available list function.

Multiline strings

"foo\
\bar"               --> "foobar"

Converting between characters and values

Problem Solution Examples
converting a character to a numeric value ord
import Data.Char
ord 'A'    --> 65
converting a numeric value to a character chr
import Data.Char
chr 99     --> 'c'

Reversing a string by words or characters

Problem Solution Examples
reversing a string by characters reverse
reverse "foo bar baz"                        --> "zab rab oof"
reversing a string by words words, reverse, unwords
unwords $ reverse $ words "foo bar baz"      --> "baz bar foo"
reversing a string by characters by words words, reverse, map, unwords
unwords $ map reverse $ words "foo bar baz"  --> "oof rab zab"

Converting case

Problem Solution Examples
converting a character to upper-case toUpper
import Data.Char
toUpper 'a'            --> 'A'
converting a character to lower-case toLower
import Data.Char
toLower 'A'            --> 'a'
converting a string to upper-case toUpper, map
import Data.Char
map toUpper "Foo Bar"  --> "FOO BAR"
converting a string to lower-case toLower, map
import Data.Char
map toLower "Foo Bar"  --> "foo bar"

Interpolation

TODO

Performance

Text handles character strings with better performance than Strings; it should be the prefered data type for UTF-8 encoded strings.

If observe that Text does not give sufficient performance, consider Data.ByteString, which is essentially a byte array. It can contain UTF-8 characters, but handle with care! .

Unicode

Current GHC (later than 6) encodes Strings and Text in UTF-8. This may change the behavior of some of the functions explained above when applied to characters beyond the traditional ASCII characters. Remember that not every character in UTF-8 encoding is one byte!