Difference between revisions of "User talk:PaoloMartini"
From HaskellWiki
PaoloMartini (talk | contribs) |
|||
Line 1: | Line 1: | ||
+ | Show that if <math>p(x)</math> is a polynomial of degree <math>n</math>, then <math>p(x - 1)</math> is a polynomial of the same degree. | ||
+ | |||
+ | Definition of polynomial. | ||
+ | |||
:<math>p(x) = \sum_{i=0}^n a_i x^i </math> | :<math>p(x) = \sum_{i=0}^n a_i x^i </math> | ||
− | :<math>(x - 1)^n = \sum_{i=0}^n {n \choose i } x^{n-i} (-1)^i </math> | + | Binomial theorem. |
+ | |||
+ | :<math>(a + b)^n = \sum_{i=0}^n {n \choose i} a^{n-1} b^i </math> | ||
+ | |||
+ | Special case. | ||
+ | |||
+ | :<math>(x - 1)^n = \sum_{i=0}^n {n \choose i} x^{n-i} (-1)^i </math> | ||
+ | |||
+ | Binomial coefficient simmetry. | ||
:<math>{n \choose k} = {n \choose n-k} </math> | :<math>{n \choose k} = {n \choose n-k} </math> | ||
+ | |||
+ | Hence: | ||
:<math>(x - 1)^n = \sum_{i=0}^n {n \choose i} x^i (-1)^i </math> | :<math>(x - 1)^n = \sum_{i=0}^n {n \choose i} x^i (-1)^i </math> | ||
Line 10: | Line 24: | ||
= \sum_{i=0}^n (a_i \sum_{k=0}^n {n \choose k} x^k (-1)^k). </math> | = \sum_{i=0}^n (a_i \sum_{k=0}^n {n \choose k} x^k (-1)^k). </math> | ||
− | + | zZzZ... | |
− | |||
− | |||
− | + | ---- |
Revision as of 15:43, 14 September 2006
Show that if is a polynomial of degree
, then
is a polynomial of the same degree.
Definition of polynomial.
Binomial theorem.
Special case.
Binomial coefficient simmetry.
Hence:
zZzZ...