Difference between revisions of "User talk:PaoloMartini"

From HaskellWiki
Jump to navigation Jump to search
Line 1: Line 1:
Show that if <math>p(x)</math> is a polynomial of degree <math>n</math>, then <math>p(x - 1)</math> is a polynomial of the same degree.
Definition of polynomial.
:<math>p(x) = \sum_{i=0}^n a_i x^i </math>
Binomial theorem.
:<math>(a + b)^n = \sum_{i=0}^n {n \choose i} a^{n-i} b^i </math>
Special case.
:<math>(x - 1)^n = \sum_{i=0}^n {n \choose i} x^{n-i} (-1)^i </math>
Binomial coefficient simmetry.
:<math>{n \choose k} = {n \choose n-k} </math>
:<math>(x - 1)^n = \sum_{i=0}^n {n \choose i} x^i (-1)^i </math>
:<math>p(x-1) = \sum_{i=0}^n a_i (x - 1)^i
= \sum_{i=0}^n \left[ a_i \left( \sum_{k=0}^n {n \choose k} x^k (-1)^k \right) \right]
= \sum_{i=0}^n \sum_{k=0}^i a_i {n \choose k} x^k (-1)^k
= \sum_{i=0}^n \sum_{k=0}^i a_k {n \choose i} x^i (-1)^i.</math>

Revision as of 19:36, 14 September 2006