
Title� Introduction to Functional Programming

Lecturer� Mike Gordon
�http���www�cl�cam�ac�uk�users�mjcg��

Class� Computer Science Tripos� Part II�General� � Diploma

Term� Lent term ����

First Lecture� Friday January �� ���� at ��am

Location� Heycock Lecture Room

Duration� Twelve lectures �M� W� F� ���

Preface

This course aims to teach both the theory and practice of functional programming�
The theory consists of the ��calculus and the practice will be illustrated using the
programming language Standard ML�

The �eld of Functional Programming splits into those who prefer �lazy� languages
like Haskell and those who prefer �strict� languages like ML� The practical parts
of this course almost exclusively emphasise the latter� but the material on the ��
calculus underlies both approaches�

The chapters on the ��calculus have been largely condensed from Part II of the
book�

M�J�C� Gordon� Programming Language Theory and its Implementa�

tion� Prentice Hall International Series in Computer Science� ��		
cur�
rently out of print��

The introduction to ML in Chapter � started life as part of�

Gordon� M�J�C�� Milner� A�J�R�G� and Wadsworth� C�P�� Edinburgh

LCF� a mechanized logic of computation� Springer Lecture Notes in
Computer Science� Springer�Verlag� ����

The ML parts of this were updated substantially in the technical report�

G� Cousineau� M� Gordon� G� Huet� R� Milner� L� Paulson� and
C� Wadsworth� The ML handbook� INRIA
��	���

I translated the introduction of this report into Standard ML and added some new
material to get Chapter �� The case studies were written by me at great speed�
and so are bound to contain numerous mistakes� They aim to show how ML�based
functional programming can be used in practice�

The following people have contributed in various ways to the material cited above
or to these notes� Graham Birtwistle� Shiu Kai Chin� Avra Cohn� Jan van Eijck�
Mike Fourman� Elsa Gunter� Peter Hancock� Martin Hyland� Tom Melham� Allan
C� Milne� Nicholas Ouruso�� David Shepherd and Roger Stokes�

i

ii Preface

Contents

Preface i

� Introduction to the ��calculus �

��� Syntax and semantics of the ��calculus � � � � � � � � � � � � � � � � � �

��� Notational conventions �

��� Free and bound variables �

��� Conversion rules �

����� ��conversion �

����� ��conversion �

����� ��conversion �

����� Generalized conversions �

��� Equality of ��expressions �

��� The �� relation �

�� Extensionality ��

��	 Substitution ��

� Representing Things in the ��calculus ��

��� Truth�values and the conditional ��

��� Pairs and tuples ��

��� Numbers ��

��� De�nition by recursion ��

��� Functions with several arguments ��

��� Mutual recursion ��

�� Representing the recursive functions � � � � � � � � � � � � � � � � � � ��

���� The primitive recursive functions � � � � � � � � � � � � � � � � ��

���� The recursive functions �

���� The partial recursive functions � � � � � � � � � � � � � � � � � ��

��	 Extending the ��calculus ��

��� Theorems about the ��calculus ��

���� Call�by�value and Y ��

� Combinators ��

��� Combinator reduction ��

��� Functional completeness ��

��� Reduction machines ��

��� Improved translation to combinators � � � � � � � � � � � � � � � � � � ��

��� More combinators ��

��� Curry�s algorithm ��

�� Turner�s algorithm ��

iii

iv Contents

� A Quick Overview of ML ��

��� Interacting with ML �

��� Expressions �

��� Declarations �	

��� Comments ��

��� Functions ��

��� Type abbreviations ��

�� Operators ��

��	 Lists ��

��� Strings ��

���� Records ��

���� Polymorphism ��

���� fn�expressions ��

���� Conditionals ��

���� Recursion ��

���� Equality types �

���� Pattern matching �	

��� The case construct ��

���	 Exceptions ��

���� Datatype declarations ��

���� Abstract types ��

���� Type constructors ��

���� References and assignment �

���� Iteration �

���� Programming in the large �	

� Case study �� parsing �	

��� Lexical analysis ��

��� Simple special cases of parsing �

����� Applicative expressions �

����� Precedence parsing of in�xes � � � � � � � � � � � � � � � � � �

��� A general top�down precedence parser � � � � � � � � � � � � � � � � � 	�

� Case study �� the ��calculus
	

��� A ��calculus parser ��

��� Implementing substitution ��

��� The SECD machine ��

Bibliography 	�

Chapter �

Introduction to the ��calculus

The ��calculus
or lambda�calculus� is a theory of functions that was originally
developed by the logician Alonzo Church as a foundation for mathematics� This
work was done in the ����s� several years before digital computers were invented� A
little earlier
in the ����s� Moses Sch�on�nkel developed another theory of functions
based on what are now called �combinators�� In the ����s� Haskell Curry redis�
covered and extended Sch�on�nkel�s theory and showed that it was equivalent to
the ��calculus� About this time Kleene showed that the ��calculus was a universal
computing system� it was one of the �rst such systems to be rigorously analysed�
In the ����s John McCarthy was inspired by the ��calculus to invent the program�
ming language LISP� In the early ����s Peter Landin showed how the meaning of
imperative programming languages could be speci�ed by translating them into the
��calculus� He also invented an in�uential prototype programming language called
ISWIM ����� This introduced the main notations of functional programming and
in�uenced the design of both functional and imperative languages� Building on this
work� Christopher Strachey laid the foundations for the important area of denota�
tional semantics ���� ���� Technical questions concerning Strachey�s work inspired
the mathematical logician Dana Scott to invent the theory of domains� which is now
one of the most important parts of theoretical computer science� During the ���s
Peter Henderson and Jim Morris took up Landin�s work and wrote a number of
in�uential papers arguing that functional programming had important advantages
for software engineering ��� ���� At about the same time David Turner proposed
that Sch�on�nkel and Curry�s combinators could be used as the machine code of
computers for executing functional programming languages� Such computers could
exploit mathematical properties of the ��calculus for the parallel evaluation of pro�
grams� During the ��	�s several research groups took up Henderson�s and Turner�s
ideas and started working on making functional programming practical by designing
special architectures to support it� some of them with many processors�

We thus see that an obscure branch of mathematical logic underlies important
developments in programming language theory� such as�

i� The study of fundamental questions of computation�

ii� The design of programming languages�

iii� The semantics of programming languages�

iv� The architecture of computers�

��� Syntax and semantics of the ��calculus

The ��calculus is a notation for de�ning functions� The expressions of the notation
are called ��expressions and each such expression denotes a function� It will be
seen later how functions can be used to represent a wide variety of data and data�
structures including numbers� pairs� lists etc� For example� it will be demonstrated

�

� Chapter �� Introduction to the ��calculus

how an arbitrary pair of numbers
x� y� can be represented as a ��expression� As
a notational convention� mnemonic names are assigned in bold or underlined to
particular ��expressions� for example � is the ��expression
de�ned in Section ����
which is used to represent the number one�

There are just three kinds of ��expressions�

i� Variables� x� y� z etc� The functions denoted by variables are determined
by what the variables are bound to in the environment � Binding is done by
abstractions
see � below�� We use V � V�� V� etc� for arbitrary variables�

ii� Function applications or combinations� if E� and E� are ��expressions�
then so is
E� E��� it denotes the result of applying the function denoted by
E� to the function denoted by E�� E� is called the rator
from �operator��
and E� is called the rand
from �operand��� For example� if
m�n� denotes
a function representing the pair of numbers m and n
see Section ���� and
sum denotes the addition function� ��calculus
see Section ����� then the
application
sum
m�n�� denotes m�n�

iii� Abstractions� if V is a variable and E is a ��expression� then �V� E is an
abstraction with bound variable V and body E� Such an abstraction denotes
the function that takes an argument a and returns as result the function
denoted by E in an environment in which the bound variable V denotes a�
More speci�cally� the abstraction �V� E denotes a function which takes an
argument E� and transforms it into the thing denoted by E�E��V �
the result
of substituting E� for V in E� see Section ��	�� For example� �x� sum
x� ��
denotes the add�one function�

Using BNF� the syntax of ��expressions is just�

� ��expression� ��� �variable�
j
� ��expression� � ��expression��
j
� �variable� � � ��expression��

If V ranges over the syntax class � variable � and E� E�� E�� � � � etc� range over
the syntax class � ��expression �� then the BNF simpli�es to�

E ��� V

variables
�
j
E� E��� �z �
applications

�combinations�

�

j �V� E� �z �
abstractions

�

The description of the meaning of ��expressions just given above is vague and
intuitive� It took about �� years for logicians
Dana Scott� in fact ����� to make it
rigorous in a useful way� We shall not be going into details of this�

Example�
�x� x� denotes the �identity function��

�x� x� E� � E� �

Example�
�x�
�f�
f x��� denotes the function which when applied to E yields

�f�
f x���E�x�� i�e�
�f�
f E��� This is the function which when applied to E�

yields
f E��E��f� i�e�
E� E�� Thus

�x�
�f�
f x��� E� �
�f�
f E��

and

�f�
f E�� E�� �
E� E�

�

�Note that sum is a ��expression� whereas � is a mathematical symbol in the �metalanguage�
�i�e� English� that we are using for talking about the ��calculus�

���� Notational conventions �

Exercise �

Describe the function denoted by
�x�
�y� y��� �

Example� Section ��� describes how numbers can be represented by ��expressions�
Assume that this has been done and that �� �� �� � � � are ��expressions which rep�
resent �� �� �� � � �� respectively� Assume also that add is a ��expression denoting a
function satisfying�

add m� n� � m�n�

Then
�x�

add �� x�� is a ��expression denoting the function that transforms
n to � � n� and
�x�
�y�

add x�y��� is a ��expression denoting the func�
tion that transforms m to the function which when applied to n yields m�n�
namely �y�

add m�y��� �

The relationship between the function sum in
ii� at the beginning of this section

page �� and the function add in the previous example is explained in Section ����

��� Notational conventions

The following conventions help minimize the number of brackets one has to write�

�� Function application associates to the left� i�e� E� E� � � � En means

 � � �
E� E�� � � � � En�� For example�

E� E� means
E� E��
E� E� E� means

E� E��E��
E� E� E� E� means

E� E��E��E��

�� �V� E� E� � � � En means
�V�
E� E� � � � En��� Thus the scope of ��V �
extends as far to the right as possible�

�� �V� � � � Vn� E means
�V��
 � � � �
�Vn� E� � � � ��� For example�

�x y� E means
�x�
�y� E��
�x y z� E means
�x�
�y�
�z� E���
�x y z w� E means
�x�
�y�
�z�
�w� E����

Example� �x y� add y x means
�x�
�y�

add y� x���� �

��� Free and bound variables

An occurrence of a variable V in a ��expression is free if it is not within the scope
of a ��V �� otherwise it is bound� For example

�x� y x�
�y� x y�

free

�

bound

�

free

�

bound

�

� Chapter �� Introduction to the ��calculus

��� Conversion rules

In Chapter � it is explained how ��expressions can be used to represent data objects
like numbers� strings etc� For example� an arithmetic expression like
� � �� � �
can be represented as a ��expression and its �value� �� can also be represented as a
��expression� The process of �simplifying�
�� ��� � to �� will be represented by a
process called conversion
or reduction�� The rules of ��conversion described below
are very general� yet when they are applied to ��expressions representing arithmetic
expressions they simulate arithmetical evaluation�

There are three kinds of ��conversion called ��conversion� ��conversion and ��
conversion
the original motivation for these names is not clear�� In stating the
conversion rules the notation E�E��V � is used to mean the result of substituting
E� for each free occurrence of V in E� The substitution is called valid if and only
if no free variable in E� becomes bound in E�E��V �� Substitution is described in
more detail in Section ��	�

The rules of ��conversion

� ��conversion�

Any abstraction of the form �V� E can be converted to
�V �� E�V ��V � provided the substitution of V � for V in E is
valid�

� ��conversion�

Any application of the form
�V� E�� E� can be converted to
E��E��V �� provided the substitution of E� for V in E� is valid�

� ��conversion�

Any abstraction of the form �V�
E V � in which V has no free
occurrence in E can be reduced to E�

The following notation will be used�

� E� ��
�

E� means E� ��converts to E��

� E� ��
�

E� means E� ��converts to E��

� E� ��
�

E� means E� ��converts to E��

In Section ����� below this notation is extended�

The most important kind of conversion is ��conversion� it is the one that can be
used to simulate arbitrary evaluation mechanisms� ��conversion is to do with the
technical manipulation of bound variables and ��conversion expresses the fact that
two functions that always give the same results on the same arguments are equal
see
Section ���� The next three subsections give further explanation and examples of
the three kinds of conversion
note that �conversion� and �reduction� are used below
as synonyms��

���� Conversion rules �

��	�� �
conversion

A ��expression
necessarily an abstraction� to which ��reduction can be applied is
called an ��redex � The term �redex� abbreviates �reducible expression�� The rule
of ��conversion just says that bound variables can be renamed provided no �name�
clashes� occur�

Examples

�x� x ��
�

�y� y

�x� f x ��
�

�y� f y

It is not the case that

�x� �y� add x y ��
�

�y� �y� add y y

because the substitution
�y� add x y��y�x� is not valid since the y that replaces
x becomes bound� �

��	�� �
conversion

A ��expression
necessarily an application� to which ��reduction can be applied is
called a ��redex � The rule of ��conversion is like the evaluation of a function call
in a programming language� the body E� of the function �V� E� is evaluated in an
environment in which the �formal parameter� V is bound to the �actual parameter�
E��

Examples

�x� f x� E ��
�

f E

�x�
�y� add x y�� � ��
�

�y� add � y

�y� add � y� � ��
�

add � �

It is not the case that

�x�
�y� add x y��
square y� ��
�

�y� add
square y� y

because the substition
�y� add x y��
square y��x� is not valid� since y is free in

square y� but becomes bound after substitution for x in
�y� add x y�� �

It takes some practice to parse ��expressions according to the conventions of Sec�
tion ��� so as to identify the ��redexes� For example� consider the application�

�x� �y� add x y� � ��

Putting in brackets according to the conventions expands this to�

�x�
�y�

add x� y��� �� ��

which has the form�

�x� E� �� �

where
E �
�y� add x y�

�x� E� � is a ��redex and could be reduced to E���x��

� Chapter �� Introduction to the ��calculus

��	�� �
conversion

A ��expression
necessarily an abstraction� to which ��reduction can be applied is
called an ��redex � The rule of ��conversion expresses the property that two functions
are equal if they give the same results when applied to the same arguments� This
property is called extensionality and is discussed further in Section ��� For example�
��conversion ensures that �x�
sin x� and sin denote the same function� More
generally� �V�
E V � denotes the function which when applied to an argument E�

returns
E V ��E��V �� If V does not occur free in E then
E V ��E��V � �
E E���
Thus �V� E V and E both yield the same result� namely E E�� when applied to the
same arguments and hence they denote the same function�

Examples

�x� add x ��
�
add

�y� add x y ��
�
add x

It is not the case that
�x� add x x ��

�
add x

because x is free in add x� �

��	�	 Generalized conversions

The de�nitions of ��
�

� ��
�

and ��
�

can be generalized as follows�

� E� ��
�

E� if E� can be got from E� by ��converting any subterm�

� E� ��
�

E� if E� can be got from E� by ��converting any subterm�

� E� ��
�

E� if E� can be got from E� by ��converting any subterm�

Examples

�x� �y� add x y� �� � ��
�

�y� add � y� �

�y� add � y� � ��
�

add � �

�

The �rst of these is a ��conversion in the generalized sense because
�y� add � y��
is obtained from

�x� �y� add x y����
which is not itself a ��redex� by reducing
the subexpression
�x� �y� add x y��� We will sometimes write a sequence of
conversions like the two above as�

�x� �y� add x y� �� � ��
�

�y� add � y� � ��
�

add � �

Exercise �

Which of the three ��reductions below are generalized conversions
i�e� reductions
of subexpressions� and which are conversions in the sense de�ned on page �� �

���� Equality of ��expressions

i�
�x� x� � ��
�

�

ii�
�y� y�

�x� x� �� ��
�

�y� y�� ��
�

�

iii�
�y� y�

�x� x� �� ��
�

�x� x� � ��
�

�

In reductions
ii� and
iii� in the exercise above one starts with the same ��
expression� but reduce redexes in di�erent orders�

An important property of ��reductions is that no matter in which order one does
them� one always ends up with equivalent results� If there are several disjoint
redexes in an expression� one can reduce them in parallel� Note� however� that some
reduction sequences may never terminate� This is discussed further in connection
with the normalization theorem of Chapter ���� It is a current hot research topic in
��fth�generation computing� to design processors which exploit parallel evaluation
to speed up the execution of functional programs�

��� Equality of ��expressions

The three conversion rules preserve the meaning of ��expressions� i�e� if E� can
be converted to E� then E� and E� denote the same function� This property of
conversion should be intuitively clear� It is possible to give a mathematical de�nition
of the function denoted by a ��expression and then to prove that this function is
unchanged by ��� �� or ��conversion� Doing this is surprisingly di�cult ���� and is
beyond the scope of this book�

We will simply de�ne two ��expressions to be equal if they can be transformed into
each other by a sequence of
forwards or backwards� ��conversions� It is important
to be clear about the di�erence between equality and identity � Two ��expressions
are identical if they consist of exactly the same sequence of characters� they are
equal if one can be converted to the other� For example� �x� x is equal to �y� y�
but not identical to it� The following notation is used�

� E� � E� means E� and E� are identical�

� E� � E� means E� and E� are equal�

Equality
�� is de�ned in terms of identity
�� and conversion
��
�

� ��
�

and ��
�

�

as follows�

Equality of ��expressions

If E and E� are ��expressions then E � E� if E � E� or there exist expressions
E�� E�� � � � � En such that�

�� E � E�

�� E� � En

�� For each i either

a� Ei ��
�

Ei�� or Ei ��
�

Ei�� or Ei ��
�

Ei�� or

b� Ei�� ��
�

Ei or Ei�� ��
�

Ei or Ei�� ��
�

Ei�

	 Chapter �� Introduction to the ��calculus

Examples

�x� x� � � �

�x� x�

�y� y� �� � �

�x� �y� add x y� � � � add � �

�

From the de�nition of � it follows that�

i� For any E it is the case that E � E
equality is re�exive��

ii� If E � E�� then E� � E
equality is symmetric��

iii� If E � E� and E� � E��� then E � E��
equality is transitive��

If a relation is re�exive� symmetric and transitive then it is called an equivalence

relation� Thus � is an equivalence relation�

Another important property of � is that if E� � E� and if E�

� and E�

� are two
��expressions that only di�er in that where one contains E� the other contains E��
then E�

� � E�

�� This property is called Leibnitz�s law � It holds because the same
sequence of reduction for getting from E� to E� can be used for getting from E�

� to
E�

�� For example� if E� � E�� then by Leibnitz�s law �V� E� � �V� E��

It is essential for the substitutions in the �� and ��reductions to be valid� The va�
lidity requirement disallows� for example� �x�
�y� x� being ��reduced to �y�
�y� y�

since y becomes bound after substitution for x in �y� x�� If this invalid substitution
were permitted� then it would follow by the de�nition of � that�

�x� �y� x � �y� �y� y

But then since�

�x�
�y� x�� � � ��

�

�y� �� � ��

�
�

and

�y�
�y� y�� � � ��

�

�y� y� � ��

�
�

one would be forced to conclude that � � �� More generally by replacing � and �
by any two expressions� it could be shown that any two expressions are equal�

Exercise �

Find an example which shows that if substitutions in ��reductions are allowed to
be invalid� then it follows that any two ��expressions are equal� �

Example� If V�� V�� � � � � Vn are all distinct and none of them occur free in any of
E�� E��� � � � En� then

�V� V� � � �Vn� E� E� E� � � �En

�

�V��
�V� � � �Vn� E��E�� E� � � �En

��
�

�V� � � �Vn� E��E��V��� E� � � �En

�
�V� � � � Vn� E�E��V���E� � � �En

���

� E�E��V���E��V�� � � � �En�Vn�

�

���� The �� relation �

Exercise �

In the last example� where was the assumption used that V�� V��� � � � Vn are all
distinct and that none of them occur free in any of E�� E��� � � � En� �

Exercise �

Find an example to show that if V� � V�� then even if V� is not free in E�� it is not
necessarily the case that�

�V�V��E� E� E� � E�E��V���E��V��

�

Exercise �

Find an example to show that if V� �� V�� but V� occurs free in E�� then it is not
necessarily the case that�

�V�V�� E� E� E� � E�E��V���E��V��

�

��� The �� relation

In the previous section E� � E� was de�ned to mean that E� could be obtained
from E� by a sequence of forwards or backwards conversions� A special case of
this is when E� is got from E� using only forwards conversions� This is written
E� �� E��

De�nition of ��

If E and E� are ��expressions� then E �� E� if E � E� or there exist expressions
E�� E�� � � � �En such that�

�� E � E�

�� E� � En

�� For each i either Ei ��
�

Ei�� or Ei ��
�

Ei�� or Ei ��
�

Ei���

Notice that the de�nition of �� is just like the de�nition of � on page except
that part
b� of � is missing�

Exercise �

Find E� E� such that E � E� but it is not the case that E �� E�� �

Exercise

�very hard�� Show that if E� � E�� then there exists E such that E� �� E
and E� �� E�
This property is called the Church�Rosser theorem� Some of its
consequences are discussed in Chapter ����� �

�� Chapter �� Introduction to the ��calculus

��� Extensionality

Suppose V does not occur free in E� or E� and

E� V � E� V

Then by Leibnitz�s law
see page 	�

�V� E� V � �V� E� V

so by ��reduction applied to both sides

E� � E�

It is often convenient to prove that two ��expressions are equal using this property�
i�e� to prove E� � E� by proving E� V � E� V for some V not occuring free in E�

or E�� We will refer to such proofs as being by extensionality�

Exercise 	

Show that

�f g x� f x
g x��
�x y� x�
�x y� x� � �x� x

�

��	 Substitution

At the beginning of Section ��� E�E��V � was de�ned to mean the result of substi�
tuting E� for each free occurrence of V in E� The substitution was said to be valid
if no free variable in E� became bound in E�E��V �� In the de�nitions of �� and
��conversion� it was stipulated that the substitutions involved must be valid� Thus�
for example� it was only the case that

�V� E�� E� ��
�

E��E��V �

as long as the substitution E��E��V � was valid�

It is very convenient to extend the meaning of E�E��V � so that we don�t have
to worry about validity� This is achieved by the de�nition below which has the
property that for all expressions E� E� and E� and all variables V and V ��

�V� E�� E� �� E��E��V � and �V� E �� �V �� E�V ��V �

To ensure this property holds� E�E��V � is de�ned recursively on the structure of
E as follows�

��	� Substitution ��

E E�E��V �

V E�

V �
where V �� V �� V �

E� E� E��E
��V � E��E

��V �

�V� E� �V� E�

�V �� E�
where V �� V � and �V �� E��E
��V �

V � is not free in E��

�V �� E�
where V �� V � and �V ��� E��V
���V ���E��V �

V � is free in E�� where V �� is a variable
not free in E� or E�

This particular de�nition of E�E��V � is based on
but not identical to� the one in
Appendix C of ����

To illustrate how this works consider
�y� y x��y�x�� Since y is free in y� the last
case of the table above applies� Since z does not occur in y x or y�

�y� y x��y�x� � �z�
y x��z�y��y�x� � �z�
z x��y�x� � �z� z y

In the last line of the table above� the particular choice of V �� is not speci�ed� Any
variable not occurring in E� or E� will do�

A good discussion of substitution can be found in the book by Hindley and Seldin
���� where various technical properties are stated and proved� The following exercise
is taken from that book�

Exercise ��

Use the table above to work out

i�
�y� x
�x� x���
�y� y x��x��

ii�
y
�z� x z���
�y� z y��x��

�

It is straightforward� but rather tedious� to prove from the de�nition of E�E��V �
just given that indeed

�V� E�� E� �� E��E��V � and �V� E �� �V �� E�V ��V �

for all expressions E� E� and E� and all variables V and V ��

In Chapter � it will be shown how the theory of combinators can be used to decom�
pose the complexities of substitution into simpler operations� Instead of combinators
it is possible to use the so�called nameless terms of De Bruijn ���� De Bruijn�s idea
is that variables can be thought of as �pointers� to the �s that bind them� Instead of
�labelling� �s with names
i�e� bound variables� and then pointing to them via these
names� one can point to the appropriate � by giving the number of levels �upwards�
needed to reach it� For example� �x� �y� x y would be represented by ��� �� As a

�� Chapter �� Introduction to the ��calculus

more complicated example� consider the expression below in which we indicate the
number of levels separating a variable from the � that binds it�

�z �� �
�z �� �

�x� �y� x y
�y� x y y�

� �z �
�

� �z �
�

In De Bruijn�s notation this is ��� � �� � ��

A free variable in an expression is represented by a number bigger than the depth of
�s above it� di�erent free variables being assigned di�erent numbers� For example�

�x�
�y� y x z� x y w

would be represented by
�
�� � �� � � �

Since there are only two �s above the occurrence of �� this number must denote a
free variable� similarly there is only one � above the second occurrence of � and the
occurrence of �� so these too must be free variables� Note that � could not be used
to represent w since this had already been used to represent the free y� we thus
chose the �rst available number bigger than �
� was already in use representing z��

Care must be taken to assign big enough numbers to free variables� For example�
the �rst occurrence of z in �x� z
�y� z� could be represented by �� but the second
occurrence requires �� since they are the same variable we must use ��

Example� With De Bruijn�s scheme �x� x
�y� x y y� would be represented by
��
�� � ��� �

Exercise ��

What ��expression is represented by ��
���� �

Exercise ��

Describe an algorithm for computating the De Bruijn representation of the expres�
sion E�E��V � from the representations of E and E�� �

Chapter �

Representing Things in the

��calculus

The ��calculus appears at �rst sight to be a very primitive language� However�
it can be used to represent most of the objects and structures needed for modern
programming� The idea is to code these objects and structures in such a way that
they have the required properties� For example� to represent the truth values true

and false and the Boolean function �
�not��� ��expressions true� false and not are
devised with the properties that�

not true � false

not false � true

To represent the Boolean function �
�and�� a ��expression and is devised such
that�

and true true � true

and true false � false

and false true � false

and false false � false

and to represent 	
�or�� an expression or such that�

or true true � true

or true false � true

or false true � true

or false false � false

The ��expressions used to represent things may appear completely unmotivated at
�rst� However� the de�nitions are chosen so that they work together in unison�

We will write

LET
 � ��expression

to introduce
 as a new notation� Usually
 will just be a name such as true
or and� Such names are written in bold face� or underlined� to distinguish them
from variables� Thus� for example� true is a variable but true is the ��expression
�x� �y� x
see Section ��� below� and � is a number but � is the ��expression
�f x� f
f x�
see Section �����

Sometimes
 will be a more complicated form like the conditional notation
E �
E� j E���

��� Truth�values and the conditional

This section de�nes ��expressions true� false� not and
E � E� j E�� with the
following properties�

��

�� Chapter �� Representing Things in the ��calculus

not true � false

not false � true

true� E� j E�� � E�

false� E� j E�� � E�

The ��expressions true and false represent the truth�values true and false� not
represents the negation function � and
E � E� j E�� represents the conditional �if
E then E� else E���

There are in�nitely many di�erent ways of representing the truth�values and nega�
tion that work� the ones used here are traditional and have been developed over the
years by logicians�

LET true � �x� �y� x

LET false � �x� �y� y

LET not � �t� t false true

It is easy to use the rules of ��conversion to show that these de�nitions have the
desired properties� For example�

not true �
�t� t false true� true
de�nition of not�

� true false true
��conversion�

�
�x� �y� x� false true
de�nition of true�

�
�y� false� true
��conversion�

� false
��conversion�

Similarly not false � true�

Conditional expressions
E � E� j E�� can be de�ned as follows�

LET
E � E� j E�� �
E E� E��

This means that for any ��expressions E� E� and E��
E � E� j E�� stands for

E E� E���

The conditional notation behaves as it should�

true� E� j E�� � true E� E�

�
�x y� x� E� E�

� E�

and

false� E� j E�� � false E� E�

�
�x y� y� E� E�

� E�

���� Pairs and tuples ��

Exercise ��

Let and be the ��expression �x y�
x� y j false�� Show that�

and true true � true

and true false � false

and false true � false

and false false � false

�

Exercise ��

Devise a ��expression or such that�

or true true � true

or true false � true

or false true � true

or false false � false

�

��� Pairs and tuples

The following abbreviations represent pairs and n�tuples in the ��calculus�

LET fst � �p� p true

LET snd � �p� p false

LET
E�� E�� � �f� f E� E�

E�� E�� is a ��expression representing an ordered pair whose �rst component

i�e� E�� is accessed with the function fst and whose second component
i�e� E��
is accessed with snd� The following calculation shows how the various de�nitions
co�operate together to give the right results�

fst
E�� E�� �
�p� p true�
E�� E��

�
E�� E�� true

�
�f� f E� E�� true

� true E� E�

�
�x y� x� E� E�

� E�

Exercise ��

Show that snd
E�� E�� � E��

�

A pair is a data�structure with two components� The generalization to n components
is called an n�tuple and is easily de�ned in terms of pairs�

LET
E�� E�� � � � � En� �
E��
E��
� � �
En��� En� � � ����

�� Chapter �� Representing Things in the ��calculus

E�� � � � � En� is an n�tuple with components E�� � � �� En and length n� Pairs are ��
tuples� The abbreviations de�ned next provide a way of extracting the components
of n�tuples�

LET E
n

� � � fst E

LET E
n

� � � fst
snd E�
���

LET E
n

� i � fst
snd
snd
� � �
snd� �z �
i�� snds

E� � � ����
if i � n�

���

LET E
n

� n � snd
snd
� � �
snd� �z �
n�� snds

E� � � ����

It is easy to see that these de�nitions work� for example�

E�� E�� � � � � En�
n

� � �
E��
E��
� � ����
n

� �

� fst
E��
E��
� � ����

� E�

E�� E�� � � � � En�
n

� � �
E��
E��
� � ����
n

� �

� fst
snd
E��
E��
� � �����

� fst
E��
� � ���

� E�

In general
E�� E�� � � � � En�
n

� i � Ei for all i such that � � i � n�

Convention

We will usually just write E � i instead of E
n

� i when it is clear from the context
what n should be� For example�

E�� � � � � En� � i � Ei
where � � i � n�

��� Numbers

There are many ways to represent numbers by ��expressions� each with their own
advantages and disadvantages ��	� ���� The goal is to de�ne for each number n a ��
expression n that represents it� We also want to de�ne ��expressions to represent the
primitive arithmetical operations� For example� we will need ��expressions suc� pre�
add and iszero representing the successor function
n � n � ��� the predecessor
function
n � n���� addition and a test for zero� respectively� These ��expressions
will represent the numbers correctly if they have the following properties�

���� Numbers �

suc n � n��
for all numbers n�

pre n � n��
for all numbers n�

add m n � m�n
for all numbers m and n�

iszero � � true

iszero
suc n� � false

The representation of numbers described here is the original one due to Church� In
order to explain this it is convenient to de�ne fn x to mean n applications of f to
x� For example�

f� x � f
f
f
f
f x����

By convention f� x is de�ned to mean x� More generally�

LET E� E� � E�

LET En E� � E
E
� � �
E� �z �
n Es

E�� � � ���

Note that En
EE�� � En�� E� � E
En E��� we will use the fact later�

Example�

f�x � f
f
f
f x��� � f
f�x� � f�
f x�

�

Using the notation just introduced we can now de�ne Church�s numerals� Notice
how the de�nition of the ��expression n below encodes a unary representation of n�

LET � � �f x� x

LET � � �f x� f x

LET � � �f x� f
f x�
���

LET n � �f x� fn x
���

The representations of suc� add and iszero are now magically pulled out of a hat�
The best way to see how they work is to think of them as operating on unary
representations of numbers� The exercises that follow should help�

LET suc � �n f x� n f
f x�

LET add � �m n f x� m f
n f x�

LET iszero � �n� n
�x� false� true

�	 Chapter �� Representing Things in the ��calculus

Exercise ��

Show�

i� suc � � �

ii� suc � � �

iii� iszero � � true

iv� iszero � � false

v� add � � � �

vi� add � � � �

�

Exercise ��

Show for all numbers m and n�

i� suc n � n��

ii� iszero
suc n� � false

iii� add � n � n

iv� add m � � m

v� add m n � m� n

�

The predecesor function is harder to de�ne than the other primitive functions�
The idea is that the predecessor of n is de�ned by using �f x� fn x
i�e� n� to
obtain a function that applies f only n�� times� The trick is to �throw away� the
�rst application of f in fn� To achieve this� we �rst de�ne a function prefn that
operates on pairs and has the property that�

i� prefn f
true� x� �
false� x�

ii� prefn f
false� x� �
false� f x�

From this it follows that�

iii�
prefn f�n
false� x� �
false� fn x�

iv�
prefn f�n
true� x� �
false� fn�� x�
if n � ��

Thus n applications of prefn to
true� x� result in n�� applications of f to x� With
this idea� the de�nition of the predecessor function pre is straightforward� Before
giving it� here is the de�nition of prefn�

LET prefn � �f p�
false�
fst p� snd p j
f
snd p����

Exercise �

Show prefn f
b� x� �
false�
b� x j f x�� and hence�

���� Numbers ��

i� prefn f
true� x� �
false� x�

ii� prefn f
false� x� �
false� f x�

iii�
prefn f�n
false� x� �
false� fn x�

iv�
prefn f�n
true� x� �
false� fn�� x�
if n � ��

�

The predecessor function pre can now be de�ned�

LET pre � �n f x� snd
n
prefn f�
true� x��

It follows that if n � �

pre n f x � snd
n
prefn f�
true� x��
de�nition of pre�
� snd

prefn f�n
true� x��
de�nition of n�
� snd
false� fn�� x�
by
v� above�
� fn�� x

hence by extensionality
Section �� on page ���

pre n � �f x� fn�� x
� n��
de�nition of n���

Exercise �	

Using the results of the previous exercise
or otherwise� show that

i� pre
suc n� � n

ii� pre � � �

�

The numeral system in the next exercise is the one used in ��� and has some advan�
tages over Church�s
e�g� the predecessor function is easier to de�ne��

Exercise ��

LET b� � �x�x

LET b� �
false�b��
LET b� �
false�b��
���

LET dn�� �
false� bn�
���

Devise ��expressions dsuc� diszero� dpre such that for all n�

i� dsuc bn � dn��

�� Chapter �� Representing Things in the ��calculus

ii� diszero b� � true

iii� diszero
dsuc bn� � false

iv� dpre
dsuc bn� � bn
�

��� De
nition by recursion

To represent the multiplication function in the ��calculus we would like to de�ne a
��expression� mult say� such that�

mult m n � add n
add n
 � � �
add n �� � � � ��� �z �
m adds

This would be achieved if mult could be de�ned to satisfy the equation�

mult m n �
iszero m� � j add n
mult
pre m� n��

If this held then� for example�

mult � � �
iszero �� � j add �
mult
pre �� ���

by the equation�

� add �
mult � ��

by properties of iszero� the conditional and pre�

� add �
iszero �� � j add �
mult
pre �� ���

by the equation�

� add �
add �
mult � ���

by properties of iszero� the conditional and pre�

� add �
add �
iszero �� � j add �
mult
pre �� ����

by the equation�

� add �
add � ��

by properties of iszero and the conditional�

The equation above suggests that mult be de�ned by�

mult � �m n�
iszero m� � j add n
mult

N�B�
�

pre m� n��

Unfortunately� this cannot be used to de�ne mult because� as indicated by the
arrow�mult must already be de�ned for the ��expression to the right of the equals
to make sense�

Fortunately� there is a technique for constructing ��expressions that satisfy arbitrary
equations� When this technique is applied to the equation above it gives the desired
de�nition of mult� First de�ne a ��expression Y that� for any expression E� has
the following odd property�

Y E � E
Y E�

This says that Y E is unchanged when the function E is applied to it� In general�
if E E� � E� then E� is called a �xed point of E� A ��expression Fix with the
property that Fix E � E
Fix E� for any E is called a �xed�point operator � There
are known to be in�nitely many di�erent �xed�point operators ��	�� Y is the most
famous one� and its de�nition is�

���� De�nition by recursion ��

LET Y � �f�
�x� f
x x��
�x� f
x x��

It is straightforward to show that Y is indeed a �xed�point operator�

Y E �
�f�
�x� f
x x��
�x� f
x x��� E
de�nition of Y�

�
�x� E
x x��
�x� E
x x��
��conversion�

� E

�x� E
x x��
�x� E
x x���
��conversion�

� E
Y E�
the line before last�

This calculation shows that every ��expression E has a �xed point�

Armed with Y� we can now return to the problem of solving the equation formult�
Suppose multfn is de�ned by

LET multfn � �f

�

m n�
iszero m� � j add n
f

�

pre m� n��

and then de�ne mult by�

LET mult � Y multfn

Then�

mult m n �
Y multfn� m n
de�nition of mult�

�multfn
Y multfn� m n
�xed�point property of Y�

�multfn mult m n
de�nition of mult�

�
�f m n�
iszero m� � j add n
f
pre m� n��� mult m n

de�nition of multfn�

�
iszero m� � j add n
mult
pre m� n��
��conversion�

An equation of the form f x� � � � xn � E is called recursive if f occurs free in E�
Y provides a general way of solving such equations� Start with an equation of the
form�

f x� � � � xn � g fg
where g fg is some ��expression containing f� To obtain an f so that this
equation holds de�ne�

LET f � Y
�f x� � � � xn�g fg �

The fact that the equation is satis�ed can be shown as follows�

f x� � � � xn � Y
�f x� � � � xn�g fg � x� � � � xn
de�nition of f�

�
�f x� � � � xn�g fg �
Y
�f x� � � � xn�g fg �� x� � � � xn

�xed�point property�

�
�f x� � � � xn�g fg � f x� � � � xn
de�nition of f�

� g fg
��conversion�

Exercise ��

Construct a ��expression eq such that

eq m n �
iszero m� iszero n j

iszero n� false j eq
pre m�
pre n���

�

�� Chapter �� Representing Things in the ��calculus

Exercise ��

Show that if Y� is de�ned by�

LET Y� � Y
�y f� f
y f��

then Y� is a �xed�point operator� i�e� for any E�

Y� E � E
Y� E�

�

The �xed�point operator in the next exercise is due to Turing
Barendregt ���� page
�����

Exercise ��

Show that
�x y� y
x x y��
�x y� y
x x y�� is a �xed�point operator� �

The next exercise also comes from Barendregt�s book� where it is attributed to Klop�

Exercise ��

Show that Y� is a �xed�point operator� where�

LET � � �abcdefghijklmnopqstuvwxyzr�

r
thisisafixedpointcombinator�

LET Y� � ��������������������������

�

Exercise ��

Is it the case that Y f �� f
Y f�� If so prove it� if not �nd a ��expression bY
such that bY f �� f
bY f�� �

In the pure ��calculus as de�ned on page �� ��expressions could only be applied to
a single argument� however� this argument could be a tuple
see page ���� Thus one
can write�

E
E�� � � � � En�

which actually abbreviates�

E
E��
E��
� � �
En��� En� � � ����

For example� E
E�� E�� abbreviates E
�f� f E� E���

��� Functions with several arguments

In conventional mathematical usage� the application of an n�argument function f
to arguments x�� � � � � xn would be written as f
x�� � � � � xn�� There are two ways of
representing such applications in the ��calculus�

i� as
f x� � � � xn�� or

ii� as the application of f to an n�tuple
x�� � � � � xn��

���� Functions with several arguments ��

In case
i�� f expects its arguments �one at a time� and is said to be curried after a
logician called Curry
the idea of currying was actually invented by Sch�on�nkel ������
The functions and� or and add de�ned earlier were all curried� One advantage of
curried functions is that they can be �partially applied�� for example� add � is the
result of partially applying add to � and denotes the function n � n���

Although it is often convenient to represent n�argument functions as curried� it is
also useful to be able to represent them� as in case
ii� above� by ��expressions
expecting a single n�tuple argument� For example� instead of representing � and �
by ��expressions add and mult such that

add m n � m�n

mult m n � m�n

it might be more convenient to represent them by functions� sum and prod say�
such that

sum
m�n� � m�n

prod
m�n� � m�n

This is nearer to conventional mathematical usage and has applications that will
be encountered later� One might say that sum and prod are uncurried versions of
add and mult respectively�

De�ne�

LET curry � �f x� x�� f
x�� x��

LET uncurry � �f p� f
fst p�
snd p�

then de�ning

sum � uncurry add

prod � uncurry mult

results in sum and prod having the desired properties� for example�

sum
m�n� � uncurry add
m�n�
�
�f p� f
fst p�
snd p��add
m�n�
� add
fst
m�n��
snd
m�n��
� add m n
� m�n

Exercise ��

Show that for any E�

curry
uncurry E� � E
uncurry
curry E� � E

hence show that�
add � curry sum

mult � curry prod

�

We can de�ne n�ary functions for currying and uncurrying� For n � � de�ne�

�� Chapter �� Representing Things in the ��calculus

LET curryn � �f x� � � �xn� f
x�� � � � � xn�

LET uncurryn � �f p� f
p
n

� �� � � �
p
n

� n�

If E represents a function expecting an n�tuple argument� then curryn E represents
the curried function which takes its arguments one at a time� If E represents a
curried function of n arguments� then uncurryn E represents the uncurried version
which expects a single n�tuple as argument�

Exercise ��

Show that�

i� curryn
uncurryn E� � E

ii� uncurryn
curryn E� � E

�

Exercise �

Devise ��expressions En
� and En

� built out of curry and uncurry such that
curryn � En

� and uncurryn � En
� � �

The following notation provides a convenient way to write ��expressions which
expect tuples as arguments�

Generalized ��abstractions

LET �
V�� � � � � Vn�� E � uncurryn
�V� � � � Vn� E�

Example� �
x� y�� mult x y abbreviates�

uncurry�
�x y� mult x y� �
�f p� f
p
�

� ��
p
�

� ���
�x y� mult x y�

�
�f p� f
fst p�
snd p��
�x y� mult x y�

� �p� mult
fst p�
snd p�

Thus�

�
x� y�� mult x y�
E�� E�� �
�p� mult
fst p�
snd p��
E�� E��

�mult
fst
E�� E���
snd
E�� E���

�mult E� E�

�

This example illustrates the rule of generalized ��conversion in the box below� This
rule can be derived from ordinary ��conversion and the de�nitions of tuples and
generalized ��abstractions� The idea is that a tuple of arguments is passed to each
argument position in the body of the generalized abstraction� then each individual
argument can be extracted from the tuple without a�ecting the others�

���� Mutual recursion ��

Generalized ��conversion

�
V�� � � � � Vn�� E�
E�� � � � � En� � E�E�� � � � � En�V�� � � � � Vn�

where E�E�� � � � � En�V�� � � � � Vn� is the simultaneous substitution of E�� � � � � En

for V�� � � � � Vn respectively and none of these variables occur free in any of
E�� � � � � En�

It is convenient to extend the notation �V� V� � � � Vn� E described on page � so
that each Vi can either be an identi�er or a tuple of identi�ers� The meaning of
�V� V� � � � Vn� E is still �V��
�V��
� � �
�Vn� E� � � ���� but now if Vi is a tuple of
identi�ers then the expression is a generalized abstraction�

Example� �f
x� y�� f x y means �f�
�
x� y�� f x y� which in turn means
�f� uncurry
�x y� f x y� which equals �f�
�p� f
fst p�
snd p��� �

Exercise �	

Show that if the only free variables in E are x�� � � � � xn and f � then if�

f � Y
�f
x�� � � � � xn�� E�

then
f
x�� � � � � xn� � E�f�f�

�

Exercise ��

De�ne a ��expression div with the property that�

div
m�n� �
q� r�

where q and r are the quotient and remainder of dividing n into m� �

��� Mutual recursion

To solve a set of mutually recursive equations like�

f� � F� f� � � � fn

f� � F� f� � � � fn

���

fn � Fn f� � � � fn

we simply de�ne for � � i � n

fi � Y
�
f�� � � � fn��
F� f� � � � fn� � � � � Fn f� � � � fn�� � i

This works because if

	f � Y
�
f�� � � � fn��
F� f� � � � fn� � � � � Fn f� � � � fn��

then fi �	f � i and hence�

	f �
�
f�� � � � � fn��
F� f� � � � fn� � � � � Fn f� � � � fn��	f

�
F�
	f � �� � � �
	f � n�� � � � � Fn
	f � �� � � �
	f � n��

�
F� f� � � � fn� � � � � Fn f� � � � fn�
since 	f � i � fi��

Hence�
fi � Fi f� � � � fn

�� Chapter �� Representing Things in the ��calculus

��� Representing the recursive functions

The recursive functions form an important class of numerical functions� Shortly
after Church invented the ��calculus� Kleene proved that every recursive function
could be represented in it� This provided evidence for Church�s thesis � the hypothe�
sis that any intuitively computable function could be represented in the ��calculus�
It has been shown that many other models of compution de�ne the same class of
functions that can be de�ned in the ��calculus�

In this section it is described what it means for an arithmetic function to be repre�
sented in the ��calculus� Two classes of functions� the primitive recursive functions
and the recursive functions� are de�ned and it is shown that all the functions in
these classes can be represented in the ��calculus�

In Section ��� it was explained how a number n is represented by the ��expression
n� A ��expression f is said to represent a mathematical function f if for all numbers
x�� � � �� xn�

f
x�� � � � � xn� � y if f
x�� � � � � xn� � y

����� The primitive recursive functions

A function is called primitive recursive if it can be constructed from � and the
functions S and U i

n
de�ned below� by a �nite sequence of applications of the
operations of substitution and primitive recursion
also de�ned below��

The successor function S and projection functions U i
n
where n and i are numbers�

are de�ned by�

i� S
x� � x� �

ii� U i
n
x�� x�� � � � � xn� � xi

Substitution

Suppose g is a function of r arguments and h�� � � � � hr are r functions each of n
arguments� We say f is de�ned from g and h�� � � � � hr by substitution if�

f
x�� � � � � xn� � g
h�
x�� � � � � xn�� � � � � hr
x�� � � � � xn��

Primitive recursion

Suppose g is a function of n�� arguments and h is a function of n�� arguments�
We say f is de�ned from g and h by primitive recursion if�

f
�� x�� � � � � xn� � g
x�� � � � � xn�

f
S
x��� x�� � � � � xn� � h
f
x�� x�� � � � � xn�� x�� x�� � � � � xn�

g is called the base function and h is called the step function� It can proved that
for any base and step function there always exists a unique function de�ned from
them by primitive recursion� This result is called the primitive recursion theorem�
proofs of it can be found in textbooks on mathematical logic�

Example� The addition function sum is primitive recursive because�

sum
�� x�� � x�

sum
S
x��� x�� � S
sum
x�� x���

�

��� Representing the recursive functions �

It is now shown that every primitive recursive function can be represented by ��
expressions�

It is obvious that the ��expressions �� suc� �p� p
n

� i represent the initial functions
�� S and U i

n respectively�

Suppose function g of r variables is represented by g and functions hi
� � i � r�
of n variables are represented by hi� Then if a function f of n variables is de�ned
by substitution by�

f
x�� � � � � xn� � g
h�
x�� � � � � xn�� � � � � hr
x�� � � � � xn��

then f is represented by f where�

f � �
x�� � � � � xn�� g
h�
x�� � � � � xn�� � � � �hr
x�� � � � � xn��

Suppose function f of n variables is de�ned inductively from a base function g of
n�� variables and an inductive step function h of n�� variables� Then

f
�� x�� � � � � xn� � g
x�� � � � � xn�

f
S
x��� x�� � � � � xn� � h
f
x�� x�� � � � � xn�� x�� x�� � � � � xn�

Thus if g represents g and h represents h then f will represent f if

f
x�� x�� � � � � xn� �

iszero x� � g
x�� � � � � xn� j

h
f
pre x�� x�� � � � � xn��pre x�� x�� � � � � xn��

Using the �xed�point trick� an f can be constructed to satisfy this equation by
de�ning f to be�

Y
�f� �
x�� x�� � � � � xn��

iszero x� � g
x�� � � � � xn� j

h
f
pre x�� x�� � � � � xn��pre x�� x�� � � � � xn���

Thus any primitive recursive function can be represented by a ��expression�

����� The recursive functions

A function is called recursive if it can be constructed from �� the successor function
and the projection functions
see page ��� by a sequence of substitutions� primitive
recursions and minimizations �

Minimization

Suppose g is a function of n arguments� We say f is de�ned from g by minimization
if�

f
x�� x�� � � � � xn� � �the smallest y such that g
y� x�� � � � � xn��x��

The notation MIN
f� is used to denote the minimization of f � Functions de�ned
by minimization may be unde�ned for some arguments� For example� if one is the
function that always returns �� i�e� one
x� � � for every x� then MIN
one� is only
de�ned for arguments with value �� This is obvious because if f
x� � MIN
one�
x��
then�

f
x� � �the smallest y such that one
y��x�

and clearly this is only de�ned if x � �� Thus

MIN
one�
x� �

��
�

� if x � �

unde�ned otherwise

�	 Chapter �� Representing Things in the ��calculus

To show that any recursive function can be represented in the ��calculus it is neces�
sary to show how to represent the minimization of an arbitrary function� Suppose
g represents a function g of n variables and f is de�ned by�

f � MIN
g�

Then if a ��expressionmin can be devised such thatmin x f
x�� � � � � xn� represents
the least number y greater than x such that

f
y� x�� � � � � xn� � x�

then g will represent g where�

g � �
x�� x�� � � � � xn�� min � f
x�� x�� � � � � xn�

min will clearly have the desired property if�

min x f
x�� x�� � � � � xn� �

eq
f
x� x�� � � � � xn�� x��� x jmin
suc x� f
x�� x�� � � � � xn��

where eq m n is equal to true if m � n and false otherwise
a suitable de�nition
of eq occurs on page ���� Thus min can simply be de�ned to be�

Y
�m�
�x f
x�� x�� � � � � xn��

eq
f
x� x�� � � � � xn�� x� � x j m
suc x� f
x�� x�� � � � � xn���

Thus any recursive function can be represented by a ��expression�

Higher�order primitive recursion

There are functions which are recursive but not primitive recursive� Here is a version
of Ackermann�s function�
� de�ned by�

�� n� � n��

m��� �� �

m� ��

m��� n��� �

m�

m��� n��

However� if one allows functions as arguments� then many more recursive functions
can be de�ned by a primitive recursion� For example� if the higher�order function
rec is de�ned by primitive recursion as follows�

rec
�� x�� x�� � x�
rec
S
x��� x�� x�� � x�
rec
x�� x�� x���

then
 can be de�ned by�

m�n� � rec
m� S� f �
x � rec
x� f
��� f���
n�

where x � �
x� denotes the function� that maps x to �
x�� Notice that the third
argument of rec � viz� x�� must be a function� In the de�nition of
 we also took
x� to be a function� viz� S�

�Note that �x� ��x� is an expression of the ��calculus whereas x �� ��x� is a notation of informal
mathematics�

��	� Extending the ��calculus ��

Exercise ��

Show that the de�nition of
 in terms of rec works� i�e� that with
 de�ned as
above�

�� n� � n��

m��� �� �

m� ��

m��� n��� �

m�

m��� n��

�

A function which takes another function as an argument� or returns another function
as a result� is called higher�order � The example
 shows that higher�order primitive
recursion is more powerful than ordinary primitive recursion�� The use of operators
like rec is one of the things that makes functional programming very powerful�

����� The partial recursive functions

A partial function is one that is not de�ned for all arguments� For example� the
function MIN
one� described above is partial� Another example is the division
function� since division by � is not de�ned� Functions that are de�ned for all
arguments are called total �

A partial function is called partial recursive if it can be constructed from �� the suc�
cessor function and the projection functions by a sequence of substitutions� primitive
recursions and minimizations� Thus the recursive functions are just the partial re�
cursive functions which happen to be total� It can be shown that every partial
recursive function f can be represented by a ��expression f in the sense that

i� f
x�� � � � � xn� � y if f
x�� � � � � xn� � y

ii� If f
x�� � � � � xn� is unde�ned then f
x�� � � � � xn� has no normal form�

Note that despite
ii� above� it is not in general correct to regard expressions with
no normal form as being �unde�ned��

Exercise ��

Write down the ��expression that represents MIN
f�� where f
x� � � for all x� �

��	 Extending the ��calculus

Although it is possible to represent data�objects and data�structures with ��
expressions� it is often ine�cient to do so� For example� most computers have
hardware for arithmetic and it is reasonable to use this� rather than ��conversion�
to compute with numbers� A mathematically clean way of �interfacing� computation
rules to the ��calculus is via so called ��rules �

The idea is to add a set of new constants and then to specify rules� called a ��rules�
for reducing applications involving these constants� For example� one might add
numerals and � as new constants� together with the ��rule�

� m n ��
�

m�n

E� ��
�

E� means E� results by applying a ��rule to some subexpression of E���

When adding such constants and rules to the ��calculus one must be careful not to
destroy its nice properties� e�g� the Church�Rosser theorem
see page ����

�The kind of primitive recursion de�ned in Section 	�
�� is �rst�order primitive recursion�

�� Chapter �� Representing Things in the ��calculus

It can be shown that ��rules are safe if they have the form�

c� c� � � � cn ��
�

e

where c�� � � �� cn are constants and e is either a constant or a closed abstraction

such ��expressions are sometimes called values��

For example� one might add as constants Suc� Pre� IsZero� ��� ��� ��� � � � with
the ��rules�

Suc �n ��
�

�n��

Pre �n�� ��
�

�n

IsZero �� ��
�
true

IsZero �n�� ��
�
false

Here �n represents the number n� Suc� Pre� IsZero are new constants
not de�ned
��expressions like suc� pre� iszero�� and true and false are the previously de�ned
expressions
which are both closed abstractions��

��� Theorems about the ��calculus

If E� �� E� then E� can be thought of as having been got from E� by �evaluation��
If there are no
�� or ��� redexes in E� then it can be thought of as �fully evaluated��

A ��expression is said to be in normal form if it contains no �� or ��redexes
i�e� if
the only conversion rule that can be applied is ��conversion�� Thus a ��expression
in normal form is �fully evaluated��

Examples

i� The representations of numbers are all in normal form�

ii�
�x� x� � is not in normal form�

�

Suppose an expression E is �evaluated� in two di�erent ways by applying two di�er�
ent sequences of reductions until two normal forms E� and E� are obtained� The
Church�Rosser theorem stated below shows that E� and E� will be the same except
for having possibly di�erent names of bound variables�

Because the results of reductions do not depend on the order in which they are done�
separate redexes can be evaluated in parallel� Various research projects are currently
trying to exploit this fact by designing multiprocessor architectures for evaluating
��expressions� It is too early to tell how successful this work will be� There is
a possibility that the communication overhead of distributing redexes to di�erent
processors and then collecting together the results will cancel out the theoretical
advantages of the approach� Let us hope this pessimistic possibility can be avoided�
It is a remarkable fact that the Church�Rosser theorem� an obscure mathematical
result dating from before computers were invented� may underpin the design of the
next generation of computing systems�

Here is the statement of the Church�Rosser theorem� It is an example of something
that is intuitively obvious� but very hard to prove� Many properties of the ��calculus
share this property�

���� Theorems about the ��calculus ��

The Church�Rosser theorem

If E� � E� then there exists an E such that E� �� E and E� �� E�

It is now possible to see why the Chuch�Rosser theorem shows that ��expressions
can be evaluated in any order� Suppose an expression E is �evaluated� in two
di�erent ways by applying two di�erent sequences of reductions until two normal
forms E� and E� are obtained� Since E� and E� are obtained from E by sequences
of conversions� it follows by the de�nition of � that E � E� and E � E� and hence
E� � E�� By the Church�Rosser theorem there exists an expression� E� say� such
that E� �� E� and E� �� E�� Now if E� and E� are in normal form� then the
only redexes they can contain are ��redexes and so the only way that E� and E�

can be reduced to E� is by changing the names of bound variables� Thus E� and
E� must be the same up to renaming of bound variables
i�e� ��conversion��

Another application of the Church�Rosser theorem is to show that if m �� n then
the ��expressions representing m and n are not equal� i�e� m �� n� Suppose m �� n
but m � n� by the Church�Rosser theorem m �� E and n �� E for some E� But
it is obvious from the de�nitions of m and n� namely

m � �f x� fm x

n � �f x� fn x

that no such E can exist� The only conversions that are applicable to m and n are
��conversions and these cannot change the number of function applications in an
expression
m contains m applications and n contains n applications��

A ��expression E has a normal form if E � E� for some E� in normal form� The
following corollary relates expressions in normal form to those that have a normal
form� it summarizes some of the statements made above�

Corollary to the Church�Rosser theorem

i� If E has a normal form then E �� E� for some E� in normal form�

ii� If E has a normal form and E � E� then E� has a normal form�

iii� If E � E� and E and E� are both in normal form� then E and E� are
identical up to ��conversion�

Proof

i� If E has a normal form then E � E� for some E� in normal form� By the
Church�Rosser theorem there exists E�� such that E �� E�� and E� �� E���
As E� is in normal form the only redexes it can have are ��redexes� so the
reduction E� �� E�� must consist of a sequence of ��conversions� Thus E��

must be identical to E� except for some renaming of bound variables� it must
thus be in normal form as E� is�

ii� Suppose E has a normal form and E � E�� As E has a normal form� E � E��

where E�� is in normal form� Hence E� � E�� by the transitivity of �
see
page 	� and so E� has a normal form�

�� Chapter �� Representing Things in the ��calculus

iii� This was proved above�

�

Exercise ��

For each of the following ��expressions either �nd its normal form or show that it
has no normal form�

i� add �

ii� add � �

iii�
�x� x x�
�x� x�

iv�
�x� x x�
�x� x x�

v� Y

vi� Y
�y� y�

vii� Y
�f x�
iszero x� � j f
pre x���

�

Notice that a ��expression E might have a normal form even if there exists an
in�nite sequence E �� E� �� E� � � � � For example
�x� ��
Y f� has a normal
form � even though�

�x� ��
Y f� ��
�x� ��
f
Y f�� �� � � �
�x� ��
fn
Y f�� �� � � �

The normalization theorem stated below tells us that such blind alleys can always
be avoided by reducing the leftmost �� or ��redex� where by �leftmost� is meant the
redex whose beginning � is as far to the left as possible�

Another important point to note is that E� may not have a normal form even though
E� E� does have one� For example� Y has no normal form� but Y
�x� �� �� �� It
is a common mistake to think of ��expressions without a normal form as denoting
�unde�ned� functions� Y has no normal form but it denotes a perfectly well de�ned
function�� Analysis beyond the scope of this book
see Wadsworth�s paper ����
shows that a ��expression denotes an unde�ned function if and only if it cannot be
converted to an expression in head normal form� where E is in head normal form if
it has the form

�V� � � � Vm� V E� � � � En

where V�� � � � � Vm and V are variables and E�� � � � � En are ��expressions
V can
either be equal to Vi� for some i� or it can be distinct from all of them�� It follows
that the �xed�point operator Y is not unde�ned because it can be converted to

�f� f

�x� f
x x��
�x� f
x x���

which is in head normal form�

It can be shown that an expression E has a head normal form if and only if there
exist expressions E�� � � � � En such that E E� � � � En has a normal form� This
supports the interpretation of expressions without head normal forms as denoting
unde�ned functions� E being unde�ned means that E E� � � � En never terminates
for any E�� � � � � En� Full details on head normal forms and their relation to
de�nedness can be found in Barendregt�s book ����

�The mathematical characterization of the function denoted by Y can be found in Stoy�s book
���

����� Call�by�value and Y ��

The normalization theorem

If E has a normal form� then repeatedly reducing the leftmost �� or ��redex

possibly after an ��conversion to avoid invalid substitutions� will terminate
with an expression in normal form�

The remark about ��conversion in the statement of the theorem is to cover cases
like�

�x�
�y� x y�� y �� �y�� y y�

where �y� x y �� �y�� x y� has been ��converted so as to avoid the invalid substi�
tution
�y� x y��y�x� � �y� y y�

A sequence of reductions in which the leftmost redex is always reduced is called a
normal order reduction sequence�

The normalization theorem says that if E has a normal form
i�e� for some E�

in normal form E � E�� then it can be found by normal order reduction� This�
however� is not usually the �most e�cient� way to �nd it� For example� normal
order reduction requires

�x�gxgxg � E

to be reduced to

gEgEg
If E is not in normal form then it would be more e�cient to �rst reduce E to E�

say
where E� is in normal form� and then to reduce

�x�g xgxg � E�

to

gE�gE�g
thereby avoiding having to reduce E twice�

Note� however� that this �call�by�value� scheme is disastrous in cases like

�x���

�x� x x�
�x� x x��

It is a di�cult problem to �nd an optimal algorithm for choosing the next redex to
reduce� For recent work in this area see Levy�s paper �����

Because normal order reduction appears so ine�cient� some programming languages
based on the ��calculus� e�g� LISP� have used call by value even though it doesn�t
always terminate� Actually� call by value has other advantages besides e�ciency�
especially when the language is �impure�� i�e� has constructs with side e�ects
e�g� as�
signments�� On the other hand� recent research suggests that maybe normal order
evaluation is not as ine�cient as was originally thought if one uses cunning im�
plementation tricks like graph reduction
see page ���� Whether functional pro�
gramming languages should use normal order or call by value is still a controversial
issue�

���� Call�by�value and Y

Recall Y�

LET Y � �f�
�x� f
x x��
�x� f
x x��

�� Chapter �� Representing Things in the ��calculus

Unfortunately Y doesn�t work with call�by�value� because applicative order causes
it to go into a loop�

Y f �� f
Y f�
�� f
f
Y f��
�� f
f
f
Y f���
���

To get around this� de�ne�

LET �Y � �f�
�x� f
�y� x x y��
�x� f
�y� x x y��

Note that �Y is Y with x x! ��converted to �y� x x y!� �Y doesn�t goes into a
loop with call�by�value�

�Y f �� f
�y� �Y f y�

Call�by�value doesn�t evaluate �s� hence the looping is avoided�

Chapter �

Combinators

Combinators provide an alternative theory of functions to the ��calculus� They
were originally introduced by logicians as a way of studying the process of substitu�
tion� More recently� Turner has argued that combinators provide a good �machine
code� into which functional programs can be compiled ����� Several experimental
computers have been built based on Turner�s ideas
see e�g� �	�� and the results
are promising� How these machines work is explained in Section ���� Combinators
also provide a good intermediate code for conventional machines� several of the best
compilers for functional languages are based on them
e�g� ���� ����

There are two equivalent ways of formulating the theory of combinators�

i� within the ��calculus� or

ii� as a completely separate theory�

The approach here is to adopt
i� as it is slightly simpler� but
ii� was how it was
done originally�� It will be shown that any ��expression is equal to an expression
built from variables and two particular expressions� K and S� using only function
application� This is done by mimicking ��abstractions using combinations of K and
S� It will be demonstrated how ��reductions can be simulated by simpler opera�
tions involving K and S� It is these simpler operations that combinator machines
implement directly in hardware� The de�nitions of K and S are

LET K � �x y� x

LET S � �f g x�
f x�
g x�

From these de�nitions it is clear by ��reduction that for all E�� E� and E��

K E� E� � E�

S E� E� E� �
E� E��
E� E��

Any expression built by application
i�e� combination� from K and S is called a
combinator� K and S are the primitive combinators �

In BNF� combinators have the following syntax�

�combinator� ��� K j S j
�combinator� �combinator��

A combinatory expression is an expression built from K� S and zero or more vari�
ables� Thus a combinator is a combinatory expression not containing variables� In

�The two�volume treatise Combinatory Logic ��� ��� is the de�nitive reference� but the more
recent textbooks ���� 	� are better places to start�

��

�� Chapter �� Combinators

BNF� the syntax of combinatory expressions is�

�combinatory expression�
��� K j S
j �variable�
j
�combinatory expression� �combinatory expression��

Exercise ��

De�ne I by�
LET I � �x� x

Show that I � S K K� �

The identity function I de�ned in the last exercise is often taken as a primitive
combinator� but as the exercise shows this is not necessary as it can be de�ned from
K and S�

��� Combinator reduction

If E and E� are combinatory expressions then the notation E ��
c

E� is used if

E � E� or if E� can be got from E by a sequence of rewritings of the form�

i� K E� E� ��
c

E�

ii� S E� E� E� ��
c

E� E��
E� E��

iii� I E ��
c

E

Note that the reduction I E ��
c

E is derivable from
i� and
ii��

Example

S K K x ��
c
K x
K x� by
ii�

��
c

x by
i�

�

This example shows that for any E� I E ��
c

E�

Any sequence of combinatory reductions� i�e� reductions via ��
c
� can be expanded

into a sequence of ��conversions� This is clear because K E� E� and S E� E� E�

reduce to E� and
E� E��
E� E��� respectively� by sequences of ��conversions�

��� Functional completeness

A surprising fact is that any ��expression can be translated to an equivalent combi�
natory expression� This result is called the functional completeness of combinators
and is the basis for compilers for functional languages to the machine code of com�
binator machines�

The �rst step is to de�ne� for an arbitrary variable V and combinatory expression
E� another combinatory expression ��V� E that simulates �V� E in the sense that
��V� E � �V� E� This provides a way of using K and S to simulate adding ��V � to
an expression�

���� Functional completeness �

If V is a variable and E is a combinatory expression� then the combinatory expres�
sion ��V� E is de�ned inductively on the structure of E as follows�

i� ��V� V � I

ii� ��V� V � � K V �
if V �� V ��

iii� ��V� C � K C
if C is a combinator�

iv� ��V�
E� E�� � S
��V� E��
�
�V� E��

Note that ��V� E is a combinatory expression not containing V �

Example� If f and x are variables and f �� x� then�

��x� f x � S
��x� f�
��x� x�

� S
K f� I

�

The following theorem shows that ��V� E simulates ��abstraction�

Theorem
��V� E� � �V� E

Proof

We show that
��V� E� V � E� It then follows immediately that �V�
��V� E� V �
�V�E and hence by ��reduction that ��V� E � �V� E�

The proof that
��V� E� V � E is by mathematical induction on the �size� of E�
The argument goes as follows�

i� If E � V then�

��V� E� V � I V �
�x� x� V � V � E

ii� If E � V � where V � �� V then�

��V� E� V � K V � V �
�x y� x� V � V � V � � E

iii� If E � C where C is a combinator� then�

��V� E� V � K C �
�x y� x� C V � C � E

iv� If E �
E� E�� then we can assume by induction that�

��V� E�� V � E�

��V� E�� V � E�

and hence

��V� E� V �
��V�
E� E��� V

�
S
��V� E��
�
�V� E��� V

�
�f g x� f x
g x��
��V� E��
�
�V� E�� V

�
��V� E�� V

��V� E�� V �

� E� E�
by induction assumption�

� E

�

�	 Chapter �� Combinators

The notation

��V� V� � � � Vn� E

is used to mean

��V�� �
�V�� � � � ��Vn� E

Now de�ne the translation of an arbitrary ��expression E to a combinatory expres�
sion
E�C�

i�
V �C � V

ii�
E� E��C �
E��C
E��C

iii�
�V� E�C � ��V�
E�C

Theorem For every ��expression E we have� E �
E�C

Proof

The proof is by induction on the size of E�

i� If E � V then
E�C �
V �C � V

ii� If E �
E� E�� we can assume by induction that

E� �
E��C

E� �
E��C

hence

E�C �
E� E��C �
E��C
E��C � E� E� � E

iii� If E � �V� E� then we can assume by induction that

E��C � E�

hence

E�C �
�V� E��C

� ��V�
E��C
by translation rules�
� ��V� E�
by induction assumption�
� �V� E�
by previous theorem�
� E

�

This theorem shows that any ��expression is equal to a ��expression built up from
K and S and variables by application� i�e� the class of ��expressions E de�ned by
the BNF�

E ��� V j K j S j E� E�

is equivalent to the full ��calculus�

A collection of n combinators C�� � � � � Cn is called an n�element basis
Barendregt
���� Chapter 	� if every ��expression E is equal to an expression built from Cis and
variables by function applications� The theorem above shows that K and S form a
��element basis� The exercise below
from Section 	����� of Barendregt� shows that
there exists a ��element basis�

���� Reduction machines ��

Exercise ��

Find a combinator� X say� such that any ��expression is equal to an expression built
from X and variables by application� Hint� Let hE�� E�� E�i � �p� p E� E� E� and
consider hK�S�Ki hK�S�Ki hK�S�Ki and hK�S�Ki hhK�S�Ki hK�S�Kii �

Examples�

��f� ��x� f
x x� � ��f�
��x� f
x x��

� ��f�
S
��x� f�
��x� x x��

� ��f�
S
Kf�
S
��x� x�
��x� x���

� ��f�
S
Kf�
S I I��

� S
��f� S
Kf��
��f� S I I�

� S
S
��f� S�
��f� K f��
K
S I I��

� S
S
K S�
S
��f� K�
 ��f� f���
K
S I I��

� S
S
K S�
S
K K� I��
K
S I I��

Y�C �
�f�
�x� f
x x��
�x� f
x x���C

� ��f�

�x� f
x x��
�x� f
x x���C

� ��f�

�x� f
x x��C
�x� f
x x��C�

� ��f�
��x�
f
x x��C�
�
�x�
f
x x��C�

� ��f�
��x� f
x x��
��x� f
x x��

� S
��f� ��x� f
x x��
��f� ��x� f
x x��

� S
S
S
KS�
S
KK�I��
K
SII���
S
S
KS�
S
KK�I��
K
SII���

�

��� Reduction machines

Until David Turner published his paper ����� combinators were regarded as a mathe�
matical curiosity� In his paper Turner argued that translating functional languages�
i�e� languages based on the ��calculus� to combinators and then reducing the result�
ing expressions using the rewrites given on page �� is a practical way of implement�
ing these languages�

Turner�s idea is to represent combinatory expressions by trees� For example�
S
f x�
K y� z would be represented by�

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

�
�
�
�

�
�

�
�
�
�
�
�

A
A
A
A

mf mx

mS mK my

mz

�

� �

�

�

�� Chapter �� Combinators

Such trees are represented as pointer structures in memory� Special hardware or
�rmware can then be implemented to transform such trees according to the rules
of combinator reduction de�ning ��

c
�

For example� the tree above could be transformed to�

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

�
�
�
�

�
�

�
�

mf mx mK my

mz mz� �

� �

�

using the transformation

�
�
�
�

A
A
A
A
�
�
�
�

A
A
A
A
�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

�
�
�
�

�
�

�
�

mS ��SS�

��SS�

��SS�

��SS� ��SS� ��SS� ��SS�
�

�

�

� �

�

�

which corresponds to the reduction S E� E� E� ��
c

E� E��
E� E���

Exercise ��

What tree transformation corresponds to K E� E� ��
c

E�� How would this trans�

formation change the tree above� �

Notice that the tree transformation for S just given duplicates a subtree� This
wastes space� a better transformation would be to generate one subtree with two
pointers to it� i�e�

�
�
�
�

A
A
A
A
�
�
�
�

A
A
A
A
�
�
�
�

A
A
A
A

�
�
�
�

�
�
�
�

�
�
�
�

�
�

�
�

��
�

��
mS ��SS�

��SS�

��SS�

��SS�

��SS� ��SS�
�

�

�

� �

�

�

This generates a graph rather than a tree� For further details of such graph reduc�

tions see Turner�s paper �����

It is clear from the theorem above that a valid way of reducing ��expressions is�

���� Improved translation to combinators ��

i� Translating to combinators
i�e� E �
E�C��

ii� Applying the rewrites

K E� E� ��
c

E�

S E� E� E� ��
c

E� E��
E� E��

until no more rewriting is possible�

An interesting question is whether this process will �fully evaluate� expressions� If
some expression E is translated to combinators� then reduced using ��

c
� is the

resulting expression as �fully evaluated� as the result of ��reducing E directly� or is
it only partially evaluated� Surprisingly� there doesn�t seem to be anything in the
literature on this important question�� However� combinator machines have been
built and they appear to work �	��

It is well known that if E� �� E� in the ��calculus� then it is not necessarily the
case that
E��C ��

c

E��C� For example� take

E� � �y�
�z� y�
x y�
E� � �y� y

Exercise ��

With E� and E� as above show that E� �� E� in the ��calculus� but it is not the
case that
E��C ��

c

E��C� �

A combinatory expression is de�ned to be in combinatory normal form if it contains
no subexpressions of the form K E� E� or S E� E� E�� Then the normalization
theorem holds for combinatory expressions� i�e� always reducing the leftmost com�
binatory redex will �nd a combinatory normal form if it exists�

Note that if E is in combinatory normal form� then it does not necessarily follow
that it is a ��expression in normal form�

Example� S K is in combinatory normal form� but it contains a ��redex� namely�

�f�
�g x�
f x
g x���
�x y� x�

�

Exercise �

Construct a combinatory expression E which is in combinatory normal form� but
has no normal form� �

��� Improved translation to combinators

The examples on page �� show that simple ��expressions can translate to quite
complex combinatory expressions via the rules on page �	�

To make the �code� executed by reduction machines more compact� various opti�
mizations have been devised�

Examples

�The most relevant paper I could �nd is one by Hindley ����� This compares ��reduction
with combinatory reduction� but not in a way that is prima facie relevant to the termination of
combinator machines�

�� Chapter �� Combinators

i� Let E be a combinatory expression and x a variable not occurring in E� Then�

S
K E� I x ��
c

K E x�
I x� ��
c

E x

hence S
KE� I x � E x
because E� ��
c

E� implies E� �� E��� so by

extensionality
Section ��� see on page ����

S
K E� I � E

ii� Let E�� E� be combinatory expressions and x a variable not occurring in either
of them� Then�

S
K E��
K E�� x ��
c
K E� x
K E�� x ��

c
E� E�

Thus
S
K E��
K E�� x � E� E�

Now
K
E� E�� x ��

c
E� E�

hence K
E� E�� x � E� E�� Thus

S
K E��
K E�� x � E� E� � K
E� E�� x

It follows by extensionality that�

S
K E��
K E�� � K
E� E��

�

Since S
K E� I � E for any E� whenever a combinatory expression of the form
S
K E� I is generated� it can be �peephole optimized� to just E� Similarly� whenever
an expression of the form S
K E��
K E�� is generated� it can be optimized to
K
E� E���

Example� On page �� it was shown that�

��f� ��x� f
x x� � S
S
K S�
S
K K� I��
K
S I I��

Using the optimization S
K E� I � E this simpli�es to�

��f� ��x� f
x x� � S
S
K S� K�
K
S I I��

�

��� More combinators

It is easier to recognize the applicability of the optimization S
K E� I � E if I has
not been expanded to S K K� i�e� if I is taken as a primitive combinator� Various
other combinators are also useful in the same way� for example� B and C de�ned
by�

LET B � �f g x� f
g x�

LET C � �f g x� f x g

���� Curry�s algorithm ��

These have the following reduction rules�

B E� E� E� ��
c

E�
E� E��

C E� E� E� ��
c

E� E� E�

Exercise �	

Show that with B� C de�ned as above�

S
K E�� E� � B E� E�

S E�
K E�� � C E� E�

where E�� E� are any two combinatory expressions�� �

Using B and C� one can further optimize the translation of ��expressions to com�
binators by replacing expressions of the form S
K E�� E� and S E�
K E�� by
B E� E� and C E� E��

��� Currys algorithm

Combining the various optimizations described in the previous section leads to
Curry�s algorithm for translating ��expressions to combinatory expressions� This
algorithm consists in using the de�nition of
E�C given on page �	� but whenever
an expression of the form S E� E� is generated one tries to apply the following
rewrite rules�

�� S
K E��
K E�� �� K
E� E��

�� S
K E� I �� E

�� S
K E�� E� �� B E� E�

�� S E�
K E�� �� C E� E�

If more than one rule is applicable� the earlier one is used� For example�
S
K E��
K E�� is translated to K
E� E��� not to B E�
K E���

Exercise ��

Show that using Curry�s algorithm� Y is translated to the combinator�

S
C B
S I I��
C B
S I I��

�

Exercise ��

Show that�

S
S
K S�
S
K K� I��
K
S I I�� � C B
S I I�

�

�� Chapter �� Combinators

��� Turners algorithm

In a second paper� Turner proposed that Curry�s algorithm be extended to use
another new primitive combinator called S� ����� This is de�ned by�

LET S� � �c f g x� c
f x�
g x�

and has the reduction rule�

S� C E� E� E� ��
c

C
E� E��
E� E��

where C� E�� E�� E� are arbitrary combinatory expressions� The reason why �C� is
used is that S� has the property that if C is a combinator
i�e� contains no variables��
then for any E� and E��

��x� C E� E� � S� C
��x� E��
�
�x� E��

This can be shown using extensionality� Clearly x is a variable not occurring in
��x� C E� E� or S� C
��x� E��
��x� E��
exercise� why��� so it is su�cient to
show�

��x� C E� E�� x �
S� C
��x� E��
�
�x� E��� x

From the de�nition of ��x it easily follows that�

��x� C E� E� � S
S
K C�
��x� E���
�
�x� E��

hence

��x� C E� E�� x �
S
S
K C�
��x� E���
�

�x� E�� x

� S
K C�
��x� E�� x

��x� E��� x�

� K C x

��x� E�� x�

�
�x� E�� x�

� C

��x� E�� x�

�
�x� E��� x�

But
S� C
��x� E��
�
�x� E�� x � C

��x� E�� x�

�

�x� E��� x� also� and so�

��x� C E� E�� x �
S� C
��x� E��
�
�x� E��� x

Exercise ��

Where in the argument above did we use the assumption that C is a combinator�
�

Turner�s combinator S� is useful when translating ��expressions of the form
�Vn � � � V� V�� E� E�
it will be seen shortly why it is convenient to number the
bound variables in descending order�� To see this� following Turner ����� temporarily
de�ne

E� to mean ��V�� E
E�� to mean ��V��
�

�V�� E�
E��� to mean ��V��
�

�V��
�
�V�� E��

���

Recall that�

�Vn � � � V� V�� E� E��C � ��Vn�
 � � �
�
�V��
�

�V��
E� E��C��� � � � �

The next exercise shows that�

��Vn� � � � �
�V�� �

�V��
E� E��

gets very complicated as n increases�

��� Turner�s algorithm ��

Exercise ��

Show that�

i� ��x�� E� E� � S E�

� E
�

�

ii� ��x��
�
�x�� E� E�� � S
B S E��

� � E
��

�

iii� ��x��
�
�x��
�

�x�� E� E��� � S
B S
B
B S� E���

� �� E���

�

iv� ��x��
�
�x��
�

�x��
�
�x�� E� E���� �

S
B S
B
B S�
B
B
B S��� E����

� �� E����

�

�

The size of ��Vn� � � � �
�V�� �

�V��
E� E�� is proportional to the square of n� Using
S�� the size can be made to grow linearly with n�

��x��
�
�x�� E� E�� � ��x�� S E�

� E
�

�

� S� S
��x�� E
�

��
�
�x�� E

�

��
� S� S E��

� E��

�

��x��
�
�x��
�

�x�� E� E��� � ��x�� S
� S E��

� E��

�

� S�
S� S�
��x�� E
��

� �
�
�x�� E

��

� �
� S�
S� S� E���

� E���

�

��x��
�
�x��
�

�x��
�
�x�� E� E���� � ��x�� S

�
S� S� E���

� E���

�

� S�
S�
S� S��
��x�� E
���

� �
��x�� E
���

� �
� S�
S�
S� S�� E����

� E����

�

Just as B and C were introduced to simplify combinatory expressions of the form
S
K E�� E� and S E�
K E�� respectively� Turner also devised B� and C� with an
analogous role for S�� The properties required are�

S� C
K E�� E� � B� C E� E�

S� C E�
K E�� � C� C E� E�

where C is any combinator� and E�� E� are arbitrary combinatory expressions��
This is achieved if B� and C� are de�ned by�

LET B� � �c f g x� c f
g x�

LET C� � �c f g x� c
f x� g

Clearly B� and C� will have the property that for arbitrary ��expressions C� E��
E� and E��

B� C E� E� E� ��
c

C E�
E� E��

C� C E� E� E� ��
c

C
E� E�� E�

Exercise ��

Show that for arbitrary ��expressions E�� E� and E��

i� S� E�
K E�� E� � B� E� E� E�

�� Chapter �� Combinators

ii� S� E� E�
K E�� � C� E� E� E�

iii� S
B E� E�� E� � S� E� E� E�

iv� B
E� E�� E� � B� E� E� E�

v� C
B E� E�� E� � C� E� E� E�

�

Turner�s algorithm for translating ��expressions to combinatory expressions is de�
scribed by him ���� as follows�

Use the algorithm of Curry but whenever a term beginning in S� B or
C is formed use one of the following transformations if it is possible to
do so

S
B K A� B �� S� K A B�

B
K A� B �� B� K A B�

C
B K A� B �� C� K A B�

Here A and B stand for arbitrary terms as usual andK is any term com�
posed entirely of constants� The correctness of the new algorithm can
be inferred from the correctness of the Curry algorithm by demonstrat�
ing that in each of the above transformations the left� and right�hand
sides are extensionally equal� In each case this follows directly from the
de�nitions of the combinators involved�

Since Turner�s pioneering papers appeared� many people have worked on improving
the basic idea� For example� John Hughes has devised a scheme for dynamically
generating an �optimal� set of primitive combinators
called supercombinators� for
each program ����� The idea is that the compiler will generate combinatory expres�
sions built out of the supercombinators for the program being compiled� It will
also dynamically produce �microcode� to implement the reduction rules for these
supercombinators� The result is that each program runs on a reduction machine
tailored specially for it� Most current high�performance implementations of func�
tional languages use supercombinators ��� ���� Another avenue of research is to use
combinators based on the De Bruijn notation brie�y described on page ��� The
�Categorical Abstract Machine� ���� uses this approach�

Chapter 	

A Quick Overview of ML

There are two widely use descendents of the original ML� Standard ML and Caml��
These notes� describe the former� Several implementations of Standard ML exist�
These all support the same core language� but di�er in extensions� error message
details etc� AT"T�s public domain Standard ML of New Jersey!
SML�NJ� and
the commercial system PolyML� are used for research applications in the Cambridge
Computer Laboratory� The ML implementation on Thor for teaching is Edinburgh
ML! from the University of Edinburgh
with enhancements due to Arthur Norman
of Cambridge�� The di�erent outputs produced by SML�NJ and Edinburgh ML

will be sometimes shown� but the examples that follow are presented in the system
neutral style of Paulson�s book
which is closer to Edinburgh ML than SML�NJ��

��� Interacting with ML

ML is an interactive language� A common way to run it is inside a shell window
from emacs� The programs are then tested by �cutting and pasting� from the text
window to the shell window�

The two main things one does in ML are evaluate expressions and perform decla�
rations�

What follows is a session in which simple uses of various ML constructs are illus�
trated� To make the session easier to follow� it is split into a sequence of boxed
sub�sessions�

��� Expressions

The top�level ML prompt is �!� As ML reads a phrase it prompts with �! until
a complete expression or declaration is found� Neither the initial prompt � nor the
intermediate prompt � will normally be shown here� except in sessions which are
included to illustrate the behaviour of particular ML implementations
e�g� the next
two boxes��

SML�NJ is called sml! on Computer Lab machines� The following seesion shows
it being run and the expression ��� being evaluated�

�Readers interested in Caml should consult the Web page http���pauillac�inria�fr�caml��
Caml is a lightweight language better suited than Standard ML for use on small machines� All the
constructs described in this course are in Caml� though the syntactic details di�er slightly from
Standard ML

�This overview has evolved from the description of the original ML in Section 	�� of�

M�J�C� Gordon� A�J�R�G Milner and C�P� Wadsworth Edinburgh LCF� A Mechanized

Logic of Computation� Lecture Notes in Computer Science ��� Springer�Verlag ��
��

�PolyML was originally developed at the Cambridge Computer Laboratory and then licenced
�rst to Imperial Software Technology and then to Abstract Hardware Limited� It has an integrated
persistant storage system �database� and is less memory hungry than Standard ML of New Jersey�

�

�	 Chapter �� A Quick Overview of ML

�woodcock� sml
Standard ML of New Jersey� Version ��	�� February
��
		�
val it � � � unit

�����
val it � � � int

�it�
val it � � � int

After SML�NJ starts up it prints a message followed by val it � � � unit�
this
will be explained later�� It then prompts for user input with �� the user then input
���� followed by a carriage return� ML then responded with val it � � � int� a
new line� and then prompted again� This output shows that ��� evaluates to the
value � of type int�

The user then input it� followed by a carriage return� and the system responded
with val it � � � int again� In general� to evaluate an expression e one inputs
e followed by a semi�colon and then a carriage return� the system then prints e�s
value and type in the format shown� The value of the last expression evaluated at
top level is remembered in the identi�er it� This is shown explicitly in the output
from SML�NJ� but not in the output from Edinburgh ML shown in the following
box
which� after Edinburgh ML has been run� has the same input as the preceding
one��

�hammer�thor�cam�ac�uk� �group�clteach�acn�ml�unix�cml
FAM �group�clteach�acn�ml�unix�fam started on ���Jan�
		�
�������

�version �����
 of Jan ��
		�
Image file �group�clteach�acn�ml�unix�cml�exp

�written on ���Jan�
		�
������� by FAM version �����

�Loading Generic Heap���resexing���relocating by efff
ff� �bytes�

Edinburgh ML for DOS�Win��s�Unix �C Edinburgh University � A C Norman

� ����
� � � int

� it�
� � � int

Unless explicity indicated otherwise� the boxed sessions that follow use the format
illustrated by�

�����
� val it � � � int

it�
� val it � � � int

Prompts
�� are not shown� system output is indicated by � and the values of
expressions are shown explicitly bound to it� Sometimes part of the output will be
omitted
e�g� the type��

��� Declarations

The declaration val x�e evaluates e and binds the resulting value to x�

���� Comments ��

�val x�����
� val x � � � int

it�x�
� val it � false � bool

Notice that declarations do not a�ect it�

Inputting e� at top level is actually treated as inputting the declaration let it � e��
The ML system
both SML�NJ and Edinburgh ML� initially binds it to a special
value �� which is the only value of the one�element type unit�

To bind the variables x�� � � � � xn simultaneously to the values of the expressions
e�� � � � � en one can perform�

� either the declaration val x��e� and x��e� � � � and xn�en

� or val �x�� x�� � � � � xn��e�� e�� � � � � en�

These two declarations are equivalent�

�val y�
� and z�x�
� val y �
� � int
� val z � � � int

val �x�y � �y�x�
� val x �
� � int
� val y � � � int

A declaration d can be made local to the evaluation of an expression e by evaluating
the expression let d in e end�

�let val x�� in x�y end�
� val it �
� � int

x�
� val it �
� � int

��� Comments

Comments start with �� and end with �� They nest like parentheses� can extend
over many lines and can be inserted wherever spaces are allowed�

�tr�� comments can�t go in the middle of names �ue�
� Error� unbound variable or constructor� tr
� Error� unbound variable or constructor� ue

 �� this comment is ignored � � ��
� val it � true � bool

�� Inside this comment �� another one is nested � � �

��� Functions

To de�ne a function f with formal parameter x and body e one performs the
declaration� fun f x � e� To apply the function f to an actual parameter e one
evaluates the expression� f e�

�� Chapter �� A Quick Overview of ML

�fun f x � ��x�
� val f � fn � int �� int

f ��
� val it � � � int

Functions are printed as fn in SML�NJ and Fn in Edinburgh ML� since a function
as such is not printable� After fn or Fn is printed� the type of the function is also
printed� Functions are printed as fn in these notes�

Applying a function to an argument of the wrong type results in a typechecking
error� The particular error message depends on the ML system used� In SML�NJ�

�� f true�
std�in�
��
�
��� Error� operator and operand don�t agree �tycon mismatch

operator domain� int
operand� bool
in expression�

f true

In Edinburgh ML�

�	� f true�
Type clash in� �f true
Looking for a� int
I have found a� bool

Application binds more tightly than anything else in the language� thus� for ex�
ample� f � � � means �f ��� not f����� Functions of several arguments can be
de�ned�

��fun add �x�int �y�int � x�y�
� val add � fn � int �� int �� int

add � ��
� val it � � � int

val f � add ��
� val f � fn � int �� int

f ��
� val it � � � int

Application associates to the left� so add � � means �add ��� In the expression
add �� the function add is applied to �� the resulting value is the function of type
int �� int which adds � to its argument� Thus add takes its arguments �one at a
time��

Without the explicit typing of the formal parameters� ML cannot tell whether the
� is addition of integers or reals� The symbol � is overloaded� If the extra type
information is omitted� an error results� In SML�NJ�

��� fun add x y � x�y�
std�in���
� Error� overloaded variable ��� cannot be resolved

In Edinburgh ML�

��� fun add x y � x�y�
Type checking error in� �syntactic context unknown
Unresolvable overloaded identifier� �
Definition cannot be found for the type� ��a � �a �� �a

���� Type abbreviations ��

This kind of typechecking error is relatively rare� Much more common are errors
resulting from applying functions to arguments of the wrong type�

The function add could alternatively have been de�ned to take a single argument of
the product type int � int�

��fun add�x�y�int � x�y�
� val add � fn � int � int �� int

add�����
� val it � � � int

let val z � ���� in add z end�
� val it � � � int

add ��
� std�in���
���� Error� operator and operand don�t agree �tycon mismatch
� operator domain� int � int
� operand� int
� in expression�
� add �

The error message shown here is the one generated by SML�NJ� Notice that this
time the result of the function has had its type given explicitly� In general� it
is su�cient to explicitly type any subexpression as long as this disambiguates all
overloaded operators�

As well as taking structured arguments
e�g� ����� functions may also return struc�
tured results�

��fun sumdiff�x�int�y�int � �x�y�x�y�
� val sumdiff � fn � int � int �� int � int

sumdiff�����
� val it � ����
 � int � int

��� Type abbreviations

Types can be given names�

��type intpair � int � int�
� type intpair defined

fun addpair ��x�y�intpair � x�y�
� val addpair � fn � intpair �� int

�����
� val it � ���� � int � int

�����intpair�
� val it � ���� � intpair

addpair�����
� val it � � � int

The new name is simply an abbreviation� intpair and int�int are completely equiv�
alent�

�� Chapter �� A Quick Overview of ML

��� Operators

�
addition� and � are built�in in�x operators� Users can de�ne their own in�xes
using infix
for left associative operators� and infixr for right associative ones�

��infix op
�
infixr op��
� infix op

� infixr op�

This merely tells the parser to parse e� op
 e� as op
�e��e� and e� op� e� as
op��e��e��

��fun �x�int op
 �y�int � x � y�
� val op
 � fn � int � int �� int

 op
 ��
� val it � � � int

fun �x�int op� �y�int � x � y�
� val op� � fn � int � int �� int

� op� ��
� val it � � � int

An in�x of precedence n can be created by using infix n instead of just infix
and
infixr n instead of just infixr�� If the n is omitted a default precedence of � is
assumed�

The ML parser can be told to ignore the in�x status of an occurrence of an identi�er
by preceding the occurrence with op�

��op
�
� Error� nonfix identifier required

op op
�
� val it � fn � int � int �� int

The in�x status of an operator can be permanently removed using the directive
nonfix�

�	
 � ��
� val it � � � int

nonfix ��
� nonfix �

 � ��
� Error� operator is not a function
� operator� int
� in expression�
�
 � � overloaded

Removing the in�x status of built�in operators is not recommended� Let�s restore
it before chaos results� � is left�associative with precedence ��

��infix � ��
� infix � �

��	� Lists ��

��	 Lists

If e�� � � � � en all have type ty then the ML expression �e��� � ��en� has type �ty list�
The standard functions on lists are hd
head�� tl
tail�� null
which tests whether a
list is empty#i�e� is equal to ���� and the in�xed operators ��
cons� and
append�
or concatenation��

��val m � �
������
����
� val m � �
������� � int list

�hd m � tl m�
� val it � �
�������� � int � int list

�null m � null ���
� val it � �false�true � bool � bool

���m�
� val it � ���
������� � int list

�
� �� ��� �� �� ���
� val it � �
����������� � int list

�
�true����
� std�in���
���
� Error� operator and operand don�t agree �tycon mismatch
� operator domain� bool � bool list
� operand� bool � int list
� in expression�
� true �� � �� nil

All the members of a list must have the same type
the error message shown is from
SML�NJ��

��� Strings

A sequence of characters enclosed between quotes
�� is a string�

���this is a string��
� val it � �this is a string� � string

���
� val it � �� � string

The empty string is ��� A string can be �exploded� into a list of single�character
strings with the function explode� The inverse of this is implode� which concatenates
a list of single�character strings into a single string�

��explode�
� val it � fn � string �� string list

explode �this is a string��
� val it �
� ��t���h���i���s��� ���i���s��� ���a��� ���s���t���r���i���n���g��
� � string list

implode it�
� val it � �this is a string� � string

�� Chapter �� A Quick Overview of ML

���� Records

Records are data�structures with named components� They can be contrasted with
tuples whose components are determined by position�

A record with �elds x�� � � � � xn whose values are v�� � � � � vn is created by evaluating
the expression� !x��v�� � � � � xn�vn"�

��val MikeData �
!userid � �mjcg�� sex � �male�� married � true� children � �"�
� val MikeData � !children���married�true�sex��male��userid��mjcg�"
� � !children�int� married�bool� sex�string� userid�string"

The type of !x��v�� � � � � xn�vn" is !x���� � � � � xn�n"� where i is the type of vi�

The order in which record components are named does not matter�

��val MikeData� �
!sex � �male�� userid � �mjcg�� children � �� married � true"�
� val MikeData� � !children���married�true�sex��male��userid��mjcg�"
� � !children�int� married�bool� sex�string� userid�string"

MikeData � MikeData��
� val it � true � bool

The component named x of a record can be extracted using the special operator
#x�

��#children MikeData�
� val it � � � int

Functions which access record components need to be explicitly told the type of the
record they are accessing� since there may be several types of records around with
the same �eld names�

��fun Sex p � #sex p�
� Error� unresolved flex record in let pattern

type persondata � !userid�string� children�int� married�bool� sex�string"�
� type persondata � !children�int� married�bool� sex�string� userid�string"

fun Sex�p�persondata � #sex p�
� val Sex � fn � persondata �� string

A tuple �v�� � � � � vn is equivalent to the record !��v�� � � � � n�vn"
i�e� tuples in
ML are special cases of records��

��!
 � �Hello�� � � true� � � �"�
� val it � ��Hello��true�� � string � bool � int

#� it�
� val it � true � bool

���� Polymorphism

The list processing functions hd� tl etc� can be used on all types of lists�

����� fn�expressions ��

�	hd �
������
� val it �
 � int

hd �true�false�true��
� val it � true � bool

hd ��
���������
� val it � �
�� � int � int

Thus hd has several types� above it is used with types �int list �� int�
�bool list �� bool and �int � int list �� �int � int� In fact if ty is any
type then hd has the type �ty list �� ty� Functions� like hd� with many types
are called polymorphic� and ML uses type variables �a� �b� �c etc� to represent their
types�

��hd�
� val it � fn � �a list �� �a

The ML function map takes a function f
with argument type �a and result type
�b�� and a list l
of elements of type �a�� and returns the list obtained by applying
f to each element of l
which is a list of elements of type �b��

��map�
� val map � fn � ��a �� �b �� �a list �� �b list

fun add
 �x�int � x�
�
� val add
 � fn � int �� int

map add
 �
����������
� val it � ����������� � int list

map can be used at any instance of its type� above� both �a and �b were instantiated
to int� below� �a is instantiated to �int list and �b to bool� Notice that the
instance need not be speci�ed� it is determined by the type checker�

��map null ��
���� ��� ���� ����
� val it � �false�true�false�true� � bool list

A useful built�in operator is function composition o

��op o�
� val it � fn � ��a �� �b � ��c �� �a �� �c �� �b

fun add
 n � n�

and add� n � n���
� val add
 � fn � int �� int
� val add� � fn � int �� int

�add
 o add� ��
� val it � � � int

���� fn�expressions

The expression fn x �� e evaluates to a function with formal parameter x and
with body e� Thus the declaration fun f x � e is equivalent to val f � fn x �� e�
Similarly fun f�x�yz � e is equivalent to val f � fn �x�y �� fn z �� e� In the
theory of functions� the symbol � is used instead of fn� expressions like fn x �� e are
sometimes called ��expressions� because they correspond to ��calulus abstractions
�x�e
see Chapter ���

�� Chapter �� A Quick Overview of ML

��fn x �� x�
�
� val it � fn � int �� int

it ��
� val it � � � int

The higher order function map applies a function to each element of a list in turn
and returns the list of results�

��map �fn x �� x�x �
��������
� val it � �
���	�
�� � int list

val doubleup � map �fn x �� x x�
� val doubleup � fn � �a list list �� �a list list

doubleup � �
���� ������� ��
� val it � ��
���
������������������ � int list list

doubleup ���
� val it � �� � �a list list

���� Conditionals

ML has conditionals with syntax if e then e� else e� with the expected meaning�
The truthvalues are true and false� both of type bool�

��if true then
 else ��
� val it �
 � int

if ��
 then
 else ��
� val it � � � int

e� orelse e� abbreviates if e� then true else e� and e� andalso e� abbreviates
if e� then e� else false�

���� Recursion

The following de�nes the factorial function�

��fun fact n � if n�� then
 else n�fact�n�
�
� val fact � fn � int �� int

fact ��
� val it �
�� � int

Notice that the compiler automatically detects recursive calls� In earlier versions of
ML� recursion had to be explicitly indicated�

Consider�

��fun f n � int � n�
�
� val f � fn � int �� int

fun f n � if n�� then
 else n�f�n�
�
� val f � fn � int �� int

f ��
� val it � � � int

����� Equality types �

Here f � results in the evaluation of ��f��� In earlier versions of ML� the �rst
f would have been used� so that f�� would have evaluated to ��
��� hence the
expression f � would have evaluated to ����	�

An alternative style of de�ning functions in Standard ML that avoids enforced
recursion uses val and fn�

�	fun f n � int � n�
�
� val f � fn � int �� int

val f � fn n �� if n�� then
 else n�f�n�
�
� val f � fn � int �� int

f ��
� val it � 	 � int

Here� the occurrence of f in n�f�n�
 is interpreted as the previous version of f�

The keyword rec after val can be used to force a recursive interpretation�

��fun f n � int � n �
�
� val f � fn � int �� int

val rec f � fn n �� if n�� then
 else n�f�n�
�
� val f � fn � int �� int

f ��
� val it � � � int

With val rec the occurrence of f in n�f�n�
 is interpreted recursively�

���� Equality types

Simple �concrete� values like integers� booleans and strings are easy to test for
equality� Values of simple datatypes� like pairs and records� whose components
have concrete types are also easy to test for equality� For example� �v��v� is equal
to �v�

��v
�

� if and only if v� � v�� and v� � v��� There is thus a large class of types
whoses values can be tested for equality� However� in general it is undecidable
to test the equality of functions� It is thus not possible to overload � to work
properly on all types� In old versions of ML� � was interpreted on functions by
testing the equality of the addresses in memory of the data�structure representing
the functions� If such a test yielded true then the functions were certainly equal�
but many mathematically
i�e� extensionally� equal functions were di�erent using
this interpretation of ��

In Standard ML� those types whose values can be tested for equality are called
 equality types! and are treated specially� Special type variables that are con�
strained only to range over equality types are provided� These have the form ����
whereas ordinary type variables have the form ��� The built�in function � has
type ��a � ��a �� bool� Starting from this� the ML typechecker can infer types
containing equality type variables�

��fun Eq x y � �x � y�
� val Eq � fn � ��a �� ��a �� bool

fun EqualHd l
 l� � �hd l
 � hd l��
� val EqualHd � fn � ��a list �� ��a list �� bool

Trying to instantiate an equality type variable to a functional type results in an
error� In SML�NJ�

�	 Chapter �� A Quick Overview of ML

��hd � hd�
� Error� operator and operand don�t agree �equality type required
� operator domain� ��Z � ��Z
� operand� ��Y list �� �Y � ��X list �� �X
� in expression�
� � �hd�hd

EqualHd �hd� �hd��
� Error� operator and operand don�t agree �tycon mismatch
� operator domain� �Z � �Z
� operand� ��Y list �� ��Y list �� bool
� in expression�
� � � overloaded EqualHd

The use of equality types in Standard ML is considered controversial� some people
think they are too messy for the bene�t they provide� It is possible that future
versions of ML will drop equality types�

���� Pattern matching

Functions can be de�ned by pattern matching� For example here is another de�ni�
tion of the factorial function�

��fun fact � �

$ fact n � n � �fact�n�
�
� val fact � fn � int �� int

Here is the Fibonacci function�

��fun fib � � �
$ fib
 �

$ fib n � fib�n�
 � fib�n���

� val fib � fn � int �� int

Suppose function f is de�ned by�

��fun f p� � e�
$ f p� � e�

���
$ f pn � en

An expression f e is evaluated by successively matching the value of e with the
patterns p�� p�� � � �� pn
in that order� until a match is found� say with pi� Then the
value of f e is the value of ei� During the match variables in the patterns may be
bound to components of e�s value and then the variables have these values during
the evaluation of ei� For example� evaluation fib � causes � to be matched with �

then
� both of which fail� and then with n which succeeds� binding n to �� The
result is then the value of fib���
 � fib���� which
after some recursive calls��
evaluates to �
�

��fib ��
� val it � �
 � int

Patterns can be quite elaborate and are typically composed with �constructors�
see
Section ���� below��

The patterns in a function de�nition need not be exhaustive� In SML�NJ�

����� Pattern matching ��

��� fun foo � � ��
std�in����
����
� Warning� match nonexhaustive

� �� ���

val foo � fn � int �� int

In Edinburgh ML�

��� fun foo � � ��
���Warning� Patterns in Match not exhaustive� ����
� val foo � Fn � int �� int

If a function is de�ned with a non�exhaustive match� and then applied to an argu�
ment whose value doesn�t match any pattern a special kind of run�time error called
an exception results
see Section ���	��

In SML�NJ�

�	� foo ��
val it � � � int
� foo
�

uncaught Match exception std�in����
����
�

In Edinburgh ML�

��� foo
�
Exception raised at top level
Warning� optimisations enabled �

some functions may be missing from the trace
Exception� Match raised

Messages warning that a match is non�exhaustive will sometimes be omitted from
the output shown here�

The built�in list�processing functions hd and tl can be de�ned by�

��fun hd�x��l � x�
� Warning� match nonexhaustive
� val hd � fn � �a list �� �a

fun tl�x��l � l�
� Warning� match nonexhaustive
� val tl � fn � �a list �� �a list

These de�nitions give exactly the same results as the built�in functions except on the
empty list ��� where they di�er in the exceptions raised $ exceptions are described
in Section ���	�

if x is a variable and p a pattern� then the pattern x as p is a pattern that matches
the same things as p� but has the additional e�ect that when a match succeeds the
value matched is bound to x� Consider the function RemoveDuplicates�

The wildcard �! matches anything�

��fun null �� � true
$ null � � false�

� val null � fn � �a list �� bool

�� Chapter �� A Quick Overview of ML

��fun RemoveDuplicates�� � ��
$ RemoveDuplicates�x� � �x�
$ RemoveDuplicates�x
��x���l �

if x
�x� then RemoveDuplicates�x���l
else x
��RemoveDuplicates�x���l�

�val RemoveDuplicates � fn � ��a list �� ��a list

RemoveDuplicates�
�
�
����������������������������
� val it � �
��������������� � int list

The repetition
and extra list conses� of x���l can be avoided as follows�

��fun RemoveDuplicates�� � ��
$ RemoveDuplicates�l as �x� � l
$ RemoveDuplicates�x
���l as x���� �

if x
�x� then RemoveDuplicates l else x
��RemoveDuplicates l�

Incidently� note that
alas� duplicate variables are not allowed in patterns�

��fun RemoveDuplicates�� � ��
$ RemoveDuplicates�l as �x� � l
$ RemoveDuplicates�x���l as x��� � RemoveDuplicates l
$ RemoveDuplicates�x��l � x��RemoveDuplicates l�
� Error� duplicate variable in pattern�s� x

Anonymous functions
fn�expressions� can be de�ned by pattern matching using
the syntax� fn p� �� e� $ � � � $ pn �� en

��fn �� �� �none� $ ��� �� �one� $ ����� �� �two� $ � �� �many��
� val it � fn � �a list �� string

�it ��� it�true�� it�
���� it�
������
� val it � ��none���one���two���many� � string � string � string � string

Patterns can be constructed out of records� with ���! as a wildcard�

��fun IsMale�!sex��male�����"�persondata � true
$ IsMale � � false�
� val IsMale � fn � persondata �� bool

IsMale MikeData�
� val it � true � bool

An alternative de�nition is�

��fun IsMale�!sex�x����"�persondata � �x � �male��

A more compact form of this is allowed�

�	fun IsMale�!sex����"�persondata � �sex � �male��

The �eld name sex doubles as a variable� Think of a pattern !� � ��v�� � �" as abbre�
viating !� � ��v�v�� � �"�

���� The case construct

The case construct permits one to compute by cases on an expression of a datatype�
The expression case e of p� �� e� $ � � � $ pn �� en� is an equivalent form for the
application �fn p� �� e� $ � � � $ pn �� en e�

���	� Exceptions ��

���	 Exceptions

Some standard functions raise exceptions at run�time on certain arguments� When
this happens a special kind of value
called an exception packet� is propagated which
identi�es the cause of the exception� These packets have names which usually re�ect
the function that raised the exception� they may also contain values�

��hd�tl����
� uncaught exception Hd

 div ��
� uncaught exception Div

�
 div ��
����
� uncaught exception Div

Exceptions must be declared using the keyword exception� they have type exn�
Exceptions can be explicitly raised by evaluating an expression of the form raise e
where e evaluates to an exception value� Exceptions are printed slightly di�erently
in SML�NJ and Edinburgh ML� In SML�NJ�

��� exception Ex
�exception Ex��
exception Ex

exception Ex�

� �Ex
�Ex���
val it � �Ex
���Ex���� � exn list

� raise hd it�
uncaught exception Ex

In Edinburgh ML�

��exception Ex
�exception Ex��
� type exn

con Ex
 � � � exn
� type exn

con Ex� � � � exn

� �Ex
�Ex���
� ����� � exn list

� raise hd it�
Exception raised at top level
Warning� optimisations enabled �

some functions may be missing from the trace
Exception� Ex
 raised

An exception packet constructor called name and which constructs packets con�
taining values of type ty is declared by exception name of ty�

��exception Ex� of string�
� exception Ex�

Ex��
� val it � fn � string �� exn

raise Ex� �foo��
� uncaught exception Ex�

�� Chapter �� A Quick Overview of ML

The type exn is a datatype
see Section ���� below� whose constructors are the
exceptions� It is the only datatype that can be dynamically extended� All other
datatypes have to have all their constructors declared at the time when the datatype
is declared�

Because exn is a datatype� exceptions can be used in patterns like other constructors�
This is useful for handling exceptions�

An exception can be trapped
and its contents extracted� using an exception han�
dler� An important special case is unconditional trapping of all exceptions� The
value of the expression e� handle � �� e� is that of e�� unless e� raises an exception�
in which case it is the value of e��

��hd�
����� handle � �� ��
� val it �
 � int

hd�� handle � �� ��
� val it � � � int

hd�tl��� handle � �� ��
� val it � � � int

 div � handle � ��
����
� val it �
��� � int

The function half� de�ned below� only succeeds
i�e� doesn�t raise an exception� on
non�zero even numbers� on � it raises Zero� and on odd numbers it raises Odd�

��exception Zero� exception Odd�
� exception Zero
� exception Odd

fun half n �
if n�� then raise Zero

else let
val m � n div �
in
if n���m then m else raise Odd
end�

� val half � fn � int �� int

Some examples of using half�

��half ��
� val it � � � int

half ��
� uncaught exception Zero

half ��
� uncaught exception Odd

half � handle � ��
����
� val it �
��� � int

Failures may be trapped selectively by matching the exception packet� this is done
by replacing the wildcard � by a pattern� For example� if e raises Ex� then the
value of e handle Ex� �� e� $ � � � $ Exn �� en is the value of ei if Ex equals Exi
otherwise the handle�expression raises Ex�

����� Datatype declarations ��

��half�� handle Zero ��
����
� val it �
��� � int

half�
 handle Zero ��
����
� uncaught exception Odd

half�� handle Zero ��
��� $ Odd ��
��
�
� val it �
��� � int

half�� handle Zero ��
��� $ Odd ��
��
�
� val it �
��
 � int

Instead of having the two exceptions Zero and Odd� one could have a single kind of
exception containing a string�

��exception Half of string�
� exception Half

fun half n �
if n�� then raise Half �Zero�

else let
val m � n div �
in
if n���m then m else raise Half �Odd�
end�

� val half � fn � int �� int

A disadvantage of this approach is that the kind of exception is not printed when
the exceptions are uncaught�

�	half ��
� uncaught exception Half

half ��
� uncaught exception Half

half�� handle Half �Zero� ��
��� $ Half �Odd� ��
��
�
� val it �
��� � int

half�� handle Half �Zero� ��
��� $ Half �Odd� ��
��
�
� val it �
��
 � int

Alternatively� one can match the contents of the exception packet to a variable� s
say� and then branch on the value matched to s�

��half�� handle Half s �� �if s��Zero� then
��� else
��
�
� val it �
��� � int

half�� handle Half s �� �if s��Zero� then
��� else
��
�
� val it �
��
 � int

���� Datatype declarations

New types
rather than mere abbreviations� can also be de�ned� Datatypes are
types de�ned by a set of constructors which can be used to create objects of that
type and also
in patterns� to decompose objects of that type� For example� to
de�ne a type card one could use the construct datatype�

�� Chapter �� A Quick Overview of ML

��datatype card � king $ queen $ jack $ other of int�
� datatype card
� con jack � card
� con king � card
� con other � int �� card
� con queen � card

Such a declaration declares king� queen� jack and other as constructors and gives
them values� The value of a ��ary constructor such as king is the constant value
king� The value of a constructor such as other is a constructor function that given
an integer value n produces other�n�

��king�
� val it � king � card

other�����
� val it � other 	 � card

To de�ne functions that take their argument from a concrete type� fn�expressions
of the form fn p� �� e� $� � � $ pn �� en can be used� Such an expression denotes
a function that given a value v selects the �rst pattern that matches v� say pi� binds
the variables of pi to the corresponding components of the value and then evaluates
the expression ei� For example� the values of the di�erent cards can be de�ned in
the following way�

��val value � fn king �� ���
$ queen �� ���
$ jack ��
��
$ �other n �� ��n�

� val value � fn � card �� int

Alternatively� and perhaps more lucidly� this could be de�ned using a fun declara�
tion�

��fun value king � ���
$ value queen � ���
$ value jack �
��
$ value �other n � ��n�
� val value � fn � card �� int

The notion of datatype is very basic and could enable us to build ML�s elementary
types from scratch� For example� the booleans could be de�ned simply by�

��datatype bool � true $ false�
� datatype bool
� con false � bool
� con true � bool

and the positive integers by�

��datatype int � zero $ suc of int�
� datatype int
� con suc � int �� int
� con zero � int

In a similar way� LISP S�expressions could be de�ned by�

����� Abstract types ��

��datatype sexp � litatom of string
$ numatom of int
$ cons of sexp � sexp�

� datatype sexp
� con cons � sexp � sexp �� sexp
� con litatom � string �� sexp
� con numatom � int �� sexp

fun car �cons�x�y � x and cdr �cons�x�y � y�
� Warning� match nonexhaustive
� val car � fn � sexp �� sexp
� Warning� match nonexhaustive
� val cdr � fn � sexp �� sexp

val a
 � litatom �Foo� and a� � numatom
�
� val a
 � litatom �Foo� � sexp
� val a� � numatom
 � sexp

car�cons�a
�a��
� val it � litatom �Foo� � sexp

cdr�cons�a
�a��
� val it � numatom
 � sexp

Notice the warning from the compiler that the patterns in the de�nitions of car and
cdr are not exhaustive� these funtions are only partially speci�ed # namely only
on lists built with cons
i�e� non�atoms��

��car �litatom �foo��
� uncaught exception Match

���� Abstract types

New types can also be de�ned by abstraction� For example� a type time could be
de�ned as follows�

�	exception BadTime�
� exception BadTime

abstype time � time of int � int
with
fun maketime�hrs�mins � if hrs�� orelse ���hrs orelse

mins�� orelse �	�mins
then raise BadTime
else time�hrs�mins

and hours�time�t
�t� � t

and minutes�time�t
�t� � t�
end�

� type time
� val maketime � fn � int � int �� time
� val hours � fn � time �� int
� val minutes � fn � time �� int

This de�nes an abstract type time and three primitive functions� maketime� hours
and minutes�

In general� an abstract type declaration has the form abstype d with b end where d
is a datatype speci�cation and b is a binding� i�e� the kind of phrase that can follow
val� Such a declaration introduces a new type� ty say� as speci�ed by the datatype
declaration d� However� the constructors declared on ty by d are only available
within b� The only bindings that result from executing the abstype declaration are
those speci�ed in b�

�� Chapter �� A Quick Overview of ML

Thus an abstract type declaration simultaneously declares a new type together
with primitive functions for the type� the representation datatype is not accessible
outside the with�part of the declaration�

��val t � maketime������
� val t � � � time

�hours t � minutes t�
� val it � ����� � int � int

Notice that values of an abstract type are printed as �� since their representation is
hidden from the user�

���� Type constructors

Both list and � are examples of type constructors� list has one argument
hence
�a list� whereas � has two
hence �a � �b�� Type constructors may have various
prede�ned operations associated with them� for example list has null� hd� tl�
� � � etc� Because of pattern matching� it is not necessary to have any prede�ned
operations for �� One can de�ne� for example� fst and snd by�

��fun fst�x�y � x and snd�x�y � y�
� val fst � fn � �a � �b �� �a
� val snd � fn � �a � �b �� �b

val p � ������
� val p � ����� � int � int

fst p�
� val it � � � int

snd p�
� val it � �� � int

A type constructor set� that represents sets by lists without repetitions� can be
de�ned in the following way�

��abstype �a set � set of �a list
with
val emptyset � set��
fun isempty�set s � null s
fun member��� set�� � false
$ member�x� set�y��z � �x�y orelse member�x� set z
fun add�x� set�� � set�x�
$ add�x� set�y��z � if x�y

then set�y��z
else let val set l � add�x� set z in

set�y��l
end

end
� val emptyset � �� � �a list
� val isempty � fn � �a set �� bool
� val member � fn � ��a � ��a set �� bool
� val add � fn � ��a � ��a set �� ��a set

Note that the operation add ensures that no repetitions of elements occur in the list
representing the set� Here is an example using these sets�

����� References and assignment �

��val s � add�
��add����add���emptyset�
� val s � � � int set

member���s�
� val it � true � bool

member���s�
� val it � false � bool

���� References and assignment

References are �boxes� that can contain values� The contents of such boxes can
be changed using the assignment operator ��� The type ty ref is possessed by
references containing values of type ty�

References are created using the ref operator� This takes a value of type ty to a
value of type ty ref� � The expression x��e changes the contents of the reference
that is the value of x to be the value of e� The value of this assignment expression
is the dummy value �� this is the unique value of the one�element type unit�
Assignments are executed for a �side e�ect�� not for their value�

The contents of a reference can be extracted using the � operator
error message
below from SML�NJ��

��x��
�
� std�in���
���� Error� operator and operand don�t agree �tycon mismatch
� operator domain� �Z ref � �Z
� operand� int � int
� in expression�
� �� �x�

val x � ref
 and y � ref ��
� val x � ref
 � int ref
� val y � ref � � int ref

x�
� val it � ref
 � int ref

x����
� val it � � � unit

x�
� val it � ref � � int ref

�x�
� val it � � � int

References should only be resorted to in exceptional circumstances as experience
shows that their use increases the probability of errors�

���� Iteration

Here is an iterative de�nition of fact using two local references� count and result�

�There are some horrible subtleties associated with the types of references� which are ignored
here� The treatment of references in ML is currently in a state of �ux�

�	 Chapter �� A Quick Overview of ML

��fun fact n �
let val count � ref n and result � ref

in while �count � �

do �result �� �count � �result�
count �� �count�
�

�result
end�

� val fact � fn � int �� int

fact ��
� val it � ��� � int

The semicolon denotes sequencing� When an expression e��� � ��en is evaluated� each
ei is evaluated in turn and the value of the entire expression is the value of en�

Evaluating while e do c consists in evaluating e and if the result is true c is eval�
uated for its side�e�ect and then the whole process repeats� If e evaluates to false�
then the evaluation of while e do c terminates with value ��

���� Programming in the large

Sophisticated features for structuring collections of declarations
�programming in
the large�� are provided in Standard ML
but not in earlier versions of ML�� These
are designed to support the use of ML for large scale system building� They account
for much of the complexity of the language�

Standard ML of New Jersey is implemented in itself and makes extensive use of
these features� Edinburgh ML does not implement them�

The concepts of structures� signatures and functors� which provide the structuring
constructs for programming in the large� are not covered in this course
hence their
absence from Edinburgh ML on Thor will not be a problem��

Chapter

Case study �� parsing

The lexical analysis and parsing programs described here are intended to illustrate
functional programming methods and ML� rather than parsing theory� The style of
parsing presented is quite reasonable for small lightweight ad hoc parsers� but would
be inappropriate for large applications� which should be handled using heavyweight
parser generators like YACC��

��� Lexical analysis

Lexical analysis converts sequences of characters into sequences of tokens
also called
 words! or lexemes!��

For us� a token will be either a number
sequence of digits�� an identi�er
a sequence
of letters or digits starting with a letter� or a �special symbol� such as �� �� �� ���
or ��� Special symbols are speci�ed by a table
see below��

A number is a sequence of digits� The ML in�x operator �� is overloaded and can
be applied to strings� If x and y are single�character strings� then x��y just tests
whether the ASCII code of x is less then or equal to that of y� Thus a single�
character string representing a digit can be characterised by the predicate IsDigit�

��fun IsDigit x � ��� �� x andalso x �� �	��
� val IsDigit � fn � string �� bool

A letter can similarly be characterised by making use of the fact that the ASCII
codes of all lower case letters are adjacent and also the codes of all upper case latters
are adjacent�

��fun IsLetter x �
��a� �� x andalso x �� �z� orelse ��A� �� x andalso x �� �Z��

� val IsLetter � fn � string �� bool

Token are separated by �separators�� which will be taken to be spaces� newlines and
tabs� hence�

��fun IsSeparator x � �x � � � orelse x � �%n� orelse x � �%t��
� val IsSeparator � fn � string �� bool

Single characters that are not digits� letters or separators will be assumed to be
special symbols� Multi�character special symbols
e�g� ���� are considered later�

The input is assumed to be supplied as a list of single�charater strings� Lexical
analysis consists on converting such a list to a list of tokens�

Suppose the input just consists of numbers separated by separators� A function
Tokenise that did lexical analysis for just this case would need to repeatedly remove

�There is an ML based version of YACC� The parser for SML�NJ uses this�

��

� Chapter �� Case study �� parsing

digits until a non�digit
e�g� a separator� was reached� and then implode the removed
characters into a string representing a token and add that to the list of tokens�

The function GetNumber takes a list� l say� of single�character strings and returns a
pair consisting of
i� a string representing a number consisting of all the digits in
l up to the �rst non�digit and
ii� the remainder of l after these digits have been
removed� It is convenient to de�ne GetNum using an auxiliary function GetNumAux

that has an extra argument buf for accumulating a
reversed� list of characters
making up the number�

�	fun GetNumAux buf �� � �implode�rev buf� ��
$ GetNumAux buf �l as �x��l� �

if IsDigit x then GetNumAux �x��buf l�
else �implode�rev buf�l�

� val GetNumAux � fn � string list �� string list �� string � string list

GetNumAux ��a���b���c�� ��
����������� �����������
� val it � ��cba
������ ���������� � string � string list

Then GetNum is simply de�ned by�

��val GetNum � GetNumAux ���
� val GetNum � fn � string list �� string � string list

GetNum ��
����������� �����������
� val it � ��
������ ���������� � string � string list

The de�nition of GetNumAux could have been localised to GetNum using
local� � �in� � �end�

Notice that if the list argument of GetNum doesn�t start with a number� then the
empty token
implode��� will be returned�

��GetNum ��a�������
���
� val it � ������a�������
�� � string � string list

This problem will go away when we improve the code later on�

Identi�ers can be lexically analysed by similar programs�

��fun GetIdentAux buf �� � �implode�rev buf� ��
$ GetIdentAux buf �l as �x��l� �

if IsLetter x orelse IsDigit x
then GetIdentAux �x��buf l�
else �implode�rev buf�l�

� val GetIdentAux � fn � string list �� string list �� string � string list

GetIdentAux ��a���b���c�� ��e���f���g����������� �����������
� val it � ��cbaefg������ ���������� � string � string list

An identi�er must start with a letter� so GetIdent is de�ned by�

��exception GetIdentErr�
� exception GetIdentErr

fun GetIdent �x��l �
if IsLetter x then GetIdentAux �x� l else raise GetIdentErr�
� val GetIdent � fn � string list �� string � string list

The lexical analysis of numbers and identi�ers can be streamlined and uni�ed by
de�ning a single general function GetTail that takes a predicate as an argument

���� Lexical analysis �

and then uses this to test whether to keep accumulating characters in buf or to
terminate� Then GetNumAux corresponds to GetTail IsDigit and GetIdentAux to
GetTail �fn x �� IsLetter x orelse IsDigit x�

The de�nition of GetTail is similar to that of GetNumAux and GetIdentAux�

��fun GetTail p buf �� � �implode�rev buf���
$ GetTail p buf �l as x��l� �

if p x then GetTail p �x��buf l� else �implode�rev buf�l�
� val GetTail � fn
� � �string��bool �� string list �� string list �� string � string list

Using GetTail� a function to get the next token is easy to de�ne�

��fun GetNextToken �x� � �x���
$ GetNextToken �x��l �

if IsLetter x
then GetTail �fn x �� IsLetter x orelse IsDigit x �x� l
else if IsDigit x

then GetTail IsDigit �x� l
else �x�l�

� val GetNextToken � fn � string list �� string � string list

To lexically analyse a list of characters� GetNextToken is repeatedly called and sep�
arators are discarded�

��fun Tokenise �� � ��
$ Tokenise �l as x��l� �

if IsSeparator x
then Tokenise l�
else let val �t�l�� � GetNextToken l

in t���Tokenise l�� end�
� val Tokenise � fn � string list �� string list

Tokenise �explode �
��abcde
�� � ��a��
� val it � ��
�����abcde
��������������������a�� � string list

Tokenise does not handle multi�character special symbols� These will be speci�ed by
a table� represented as a list of pairs� that shows which characters can follow each
initial segment of each special symbol
such a table represents a state�transition
function for an automaton�� For example� suppose the special symbols are ��� ���
��� �� ��� and ��� then the table would be�

�������� ����������
����� ����������
����� ������
������ ������

This is not fully general because if ��� is a special symbol� then the representation
above forces �� to be also� A fully general treatment of special symbols is left as an
exercise�

Some utility functions are needed� Mem tests whether an element occurs in a list�

��fun Mem x �� � false
$ Mem x �x���l � �x�x� orelse Mem x l�

� val Mem � fn � ��a �� ��a list �� bool

Mem � �
��������������
� val it � true � bool

Mem 	 �
��������������
� val it � false � bool

� Chapter �� Case study �� parsing

Notice the equality types�

Get looks up the list of possible successors of a given string in a special�symbol table�

�		fun Get x �� � ��
$ Get x ��x��l��rest � if x�x� then l else Get x rest�
� val Get � fn � ��a �� ���a � �b list list �� �b list

Get ��� ���������������� ��������������� ����������� �������������
� val it � ��������� � string list

Get �&� ���������������� ��������������� ����������� �������������
� val it � �� � string list

The function GetSymbol takes a special�symbol table and a token and then extends
the token by removing characters from the input until the table says that no further
extension is possible�

�	�fun GetSymbol spectab tok �� � �tok���
$ GetSymbol spectab tok �l as x��l� �

if Mem x �Get tok spectab then GetSymbol spectab �tok'x l�
else �tok�l�

� val GetSymbol � fn
� � �string � string list list
� �� string �� string list �� string � string list

The function GetNextToken can be enhanced to handle special symbols� It needs to
take a special�symbol table as an argument�

�	�fun GetNextToken spectab �x� � �x���
$ GetNextToken spectab �x���l as x���l� �

if IsLetter x
then GetTail �fn x �� IsLetter x orelse IsDigit x �x� l
else if IsDigit x

then GetTail IsDigit �x� l
else if Mem x� �Get x spectab

then GetSymbol spectab �implode�x�x�� l�
else �x�l�

� val GetNextToken � fn
� � �string � string list list �� string list �� string � string list

Now Tokenise can be enhanced to use the new GetNextToken�

�	�fun Tokenise spectab �� � ��
$ Tokenise spectab �l as x��l� �

if IsSeparator x
then Tokenise spectab l�
else let val �t�l�� � GetNextToken spectab l

in t���Tokenise spectab l�� end�
� val GetNextToken � fn
� � �string � string list list �� string list �� string � string list

Here is a particular table�

�	�val SpecTab � ������ ��������������
����� ����������
����� ����������
������ �������

� val SpecTab �
� ��
� � �string � string list list

Tokenise SpecTab �explode �a���b c� d���ff�gg���
� val it � ��a���������b���c����d���������ff�������gg��� � string list

���� Simple special cases of parsing �

In the next section the lexical analyset Lex will be used�

�	�val Lex � Tokenise SpecTab o explode�
� val Lex � fn � string �� string list

Lex �a���b c� d���ff�gg���
� val it � ��a���������b���c����d���������ff�������gg��� � string list

��� Simple special cases of parsing

Before giving a complete parser� some special cases are considered�

���� Applicative expressions

Examples of applicative expressions are x� f x� �f x y� f�f x� f�g x�h x etc�
Parse trees for such expression can be represented by the recursive datatype tree�

�	�datatype tree � Atom of string $ Comb of tree � tree�
� datatype tree
� con Atom � string �� tree
� con Comb � tree � tree �� tree

Right associative without brackets

Suppose for the moment�
i� the input is supplied as a list of atoms�
ii� brackets are
ignored and
ii� application is taken to be right associative� Then a simple parser
is�

�	�fun Parse �next� � Atom next
$ Parse �next��rest � Comb�Atom next� Parse rest�

� Warning� match nonexhaustive
� val Parse � fn � string list �� tree

Parse��f�� �x�� �y�� �z���
� val it � Comb �Atom �f��Comb �Atom �x��Comb �Atom �y��Atom �z� � tree

Left associative without brackets

The usual convention is for application to be left associative� A parser for this is
only slightly more complex�

To parse f x y z the following intermediate parsings need to be done�

�� f is parsed to Atom �f�

�� f x is parsed to Comb�Atom �f�� Atom �x�

�� f x y is parsed to Comb�Comb�Atom �f�� Atom �x�� Atom �y�

Intermediate parse trees will be �passed forward� via a variable t of an auxiliary
function Parser�

� Chapter �� Case study �� parsing

�	�fun Parser t �� � t
$ Parser t �next��rest � Parser �Comb�t� Atom next rest�
� val Parser � fn � tree �� string list �� tree

fun Parse �next� � Atom next
$ Parse �next��rest � Parser �Atom next rest�
� Warning� match nonexhaustive
� val Parse � fn � string list �� tree

Parse��f�� �x�� �y�� �z���
� val it � Comb �Comb �Comb �Atom �f��Atom �x��Atom �y��Atom �z� � tree

Right associative with brackets

Brackets will now be considered� To parse � � �
e� � � �� the parser must be called
recursively inside the brackets to parse e� and then the presence of the clos�
ing bracket must be checked� Such a recursive call needs to return the parse
tree for e and the rest of the input list� Thus the type of Parse changes to
string list �� tree � string list�

If the parser encounters an unexpected closing bracket then it returns the parse tree
so far and the rest of the input� For example� ��x���y������z�� should parse to
�Comb�Atom �x�� Atom �y�� �����z���

However� there may be no parse tree so far! and to handle this case it is convenient
to add an empty tree Nil to the type tree�

�	�datatype tree � Nil $ Atom of string $ Comb of tree � tree�
� datatype tree
� con Atom � string �� tree
� con Comb � tree � tree �� tree
� con Nil � tree

Right associative function application is considered �rst� A �rst attempt is�

��	exception MissingClosingBracket�
� exception MissingClosingBracket

fun Parse �� � �Nil���
$ Parse �rest as ����� � �Nil�rest
$ Parse ������rest �

�case Parse rest
of �t� ����rest� �� let val �t��rest�� � Parse rest�

in �Comb�t�t�� rest�� end
$ � �� raise MissingClosingBracket

$ Parse �next��rest � let val �t�rest� � Parse rest
in �Comb�Atom next�t�rest� end�

� val Parse � fn � string list �� tree � string list

This doesn�t quite work�

���Parse ��x���
� val it � �Comb �Atom �x��Nil��� � tree � string list

Parse ��x���y���z���
� val it � �Comb �Atom �x��Comb �Atom �y��Comb �Atom �z��Nil���

Parse ��x���y������z���
� val it �

�Comb �Atom �x��Comb �Atom �y��Nil������z�� � tree � string list

The empty parse tree Nil returned when Parse exits needs to be removed� This is
easily done by replacing Comb by MkComb� where�

���� Simple special cases of parsing �

���fun MkComb�t�Nil � t
$ MkComb p � Comb p�

Then Parse is rede�ned�

���fun Parse �� � �Nil���
$ Parse �rest as ����� � �Nil�rest
$ Parse ������rest �

�case Parse rest
of �t� ����rest� �� let val �t��rest�� � Parse rest�

in �MkComb�t�t�� rest�� end
$ � �� raise MissingClosingBracket

$ Parse �next��rest � let val �t�rest� � Parse rest
in �MkComb�Atom next�t�rest� end�

� val Parse � fn � string list �� tree � string list

Parse now works on well�formed expressions�

���Parse ��x���
� val it � �Atom �x���� � tree � string list

Parse ��x���y���z���
� val it �
� �Comb �Atom �x��Comb �Atom �y��Atom �z���� � tree � string list

Parse ��x���y������z���
val it � �Comb �Atom �x��Atom �y�������z�� � tree � string list

However� the empty parse tree Nil can still be generated� but only in pathological
situations�

���Parse ���������
� val it � �Nil��� � tree � string list

Parse ���������a���
� val it � �Comb �Nil�Atom �a���� � tree � string list

Parse ����������������
� val it � �Nil��� � tree � string list

Parse �����x���
� val it � �Nil������x�� � tree � string list

This might be acceptable� but probably it is better to distinguish the �rst three
examples from the last� In the modi�ed version of Parse that follows� � parses to
the �empty atom� Atom ��� where �� is the empty string�

Here is the revised de�nition of Parse�

���fun Parse �� � �Nil���
$ Parse ����������rest � let val �t�rest� � Parse rest

in �MkComb�Atom ���t�rest� end
$ Parse �rest as ����� � �Nil�rest
$ Parse ������rest �

�case Parse rest
of �t� ����rest� �� let val �t��rest�� � Parse rest�

in �MkComb�t�t�� rest�� end
$ � �� raise MissingClosingBracket

$ Parse �next��rest � let val �t�rest� � Parse rest
in �MkComb�Atom next�t�rest� end�

� val Parse � fn � string list �� tree � string list

The pathological examples now become�

� Chapter �� Case study �� parsing

���Parse ���������
� val it � �Atom ����� � tree � string list

Parse ���������a���
� val it � �Comb �Atom ���Atom �a���� � tree � string list

Parse ����������������
� val it � �Comb �Atom ���Atom ����� � tree � string list

The second� fourth and �fth clauses of this latest de�nition of Parse contain some
repetition� This can be mitigated by de�ning an auxiliary function for building a
combination� BuildComb parse t inp builds a combination whose operator is t and
whose operand is got by calling the supplied parser function parse on the supplied
input inp� The combination and the remainder of the input are returned�

���fun BuildComb parse t inp �
let val �t�� rest � parse inp
in �MkComb�t�t�� rest end�
� val BuildComb � fn � ��a �� tree � �b �� tree �� �a �� tree � �b

fun Parse �� � �Nil���
$ Parse ����������rest � BuildComb Parse �Atom �� rest
$ Parse �rest as ����� � �Nil�rest
$ Parse ������rest �

�case Parse rest
of �t� ����rest� �� BuildComb Parse t rest�
$ � �� raise MissingClosingBracket

$ Parse �next��rest � BuildComb Parse �Atom next rest�

Notice how a mutual recursion is set up between Parse and BuildComb via the func�
tion argument parse� This technique will be exploited again�

The messy fourth clause of Parse could be simpli�ed with another auxiliary function
that called a supplied parser and then checked for a given input symbol�

���fun CheckSym parse sym exn inp �
case Parse inp
of �t� next��rest �� if next�sym then BuildComb parse t rest

else raise exn
$ � �� raise exn�
� val CheckSym � fn
� � �string list �� tree � �a
� �� string �� exn �� string list �� tree � �a

fun Parse �� � �Nil���
$ Parse ����������rest � BuildComb Parse �Atom �� rest
$ Parse �rest as ����� � �Nil�rest
$ Parse ������rest � CheckSym Parse �� MissingClosingBracket rest
$ Parse �next��rest � BuildComb Parse �Atom next rest�

Whether or not this is an improvement is a matter of taste�

Left associative with brackets

The technique used above $ passing intermediate parse trees as arguments to an
auxiliary function $ will be used to parse left�associating applicative expressions
with brackets� Here is a �rst attempt�

���� Simple special cases of parsing

��	fun Parser t �� � �t� ��
$ Parser t ����������rest � Parser �Comb�Atom ���t rest
$ Parser t �inp as ����� � �t� inp
$ Parser t �next� � �Comb�t�Atom next� ��
$ Parser t ������rest �

�case Parser Nil rest
of �t�� ����rest� �� Parser �Comb�t�t� rest�
$ � �� raise MissingClosingBracket

$ Parser t �next��rest � Parser �Comb�t�Atom next rest�

val Parse � Parser Nil�

This has a familiar problem with Nil

���Parse ��x���
� val it � �Comb �Nil�Atom �x���� � tree � string list

Parse ��x�������y���z������w���
� val it �
� �Comb
� �Comb
� �Comb �Nil�Atom �x��
� Comb �Comb �Nil�Atom �y��Atom �z��Atom �w��
� �� � tree � string list

The solution is to use MkComb instead of Comb� where�

���fun MkComb�Nil�t� � t�
$ MkComb p � Comb p�

fun Parser t �� � �t� ��
$ Parser t ����������rest � Parser �Comb�Atom ���t rest
$ Parser t �inp as ����� � �t� inp
$ Parser t �next� � �MkComb�t�Atom next� ��
$ Parser t ������rest �

�case Parser Nil rest
of �t�� ����rest� �� Parser �MkComb�t�t� rest�
$ � �� raise MissingClosingBracket

$ Parser t �next��rest � Parser �MkComb�t�Atom next rest�

val Parse � Parser Nil�

Then�

���Parse ��x���
� val it � �Atom �x���� � tree � string list

Parse ��x�������y���z������w���
� val it � �Comb �Comb �Atom �x��Comb �Atom �y��Atom �z��Atom �w����
� � tree � string list

���� Precedence parsing of in�xes

The parsing of expressions like x � y � z will now be considered� Parse trees are
represented by�

���datatype tree � Nil
$ Atom of string
$ BinOp of string � tree � tree�

Binary operators are assumed to have a precedence given by a table represented as
a list of pairs�

	 Chapter �� Case study �� parsing

���val BinopTable �
������ ��
����� ���

The function Lookup gets the precedence of an operator from such a table�

���fun Lookup ��s�n��tab x � if x�s then n else Lookup tab x�
� Warning� match nonexhaustive
� val Lookup � fn � ���a � �b list �� ��a �� �b

Note that the use of � forces an equality type� A string is an operator if it is assigned
a precedence by the precedence table�

���fun InTable �� x � false
$ InTable ��s�n��tab x � �x�s orelse InTable tab x�
� val InTable � fn � ���a � �b list �� ��a �� bool

The parser function Parser that follows is quite tricky� but uses many of the princi�
ples that have already been illustrated� The main new ingredient are precedences�
Assume �
i�e� the ASCII version of �� has higher precedence than �� Consider the
parsing of x�y�z versus the parsing of x�y�z�

For x�y�z the parser must proceed by�

A�� �rst building BinOp����� Atom �x�� Atom �y�

A�� then building Atom �z�

A�� �nally building Binop����� BinOp����� Atom �x�� Atom �y�� Atom �z�

For x�y�z the parser must proceed by�

B�� �rst building Atom �x�

B�� then building BinOp����� Atom �y�� Atom �z�

A�� �nally building Binop����� Atom �x�� BinOp����� Atom �y�� Atom �z�

In both cases� the left hand argument to the operator must be held whilst the right
hand argument is parsed� This will be done by giving Parser an extra parameter�
the parse�tree of the already�parsed argument
or Nil�� This is the same idea
already used to parse left associative applicative expressions
in that case� the extra
parameter holding the already�parsed rator�� The name of the extra parameter will
be t�

Precedences are used to decide between A�$A� and B�$B�� During the parsing
there is a current precedence of the parse� For example� if the data in BinopTable

above is used� then when parsing the second argument of � the precedence will be
� and when parsing the second argument of � the precedence will be ��

If the current precedence is m and a binary operator� op say� is encountered whose
precedence is n� then�

A� if m�n the expression just parsed is the second argument of the operator that
proceeds it
case A�$A��

B� if not m�n then the expression just parsed is the �rst argument of the already�
encountered operator op
case B�$B���

���� Simple special cases of parsing �

The expression just parsed will be the parse tree bound to the parse tree parameter

t� of Parser� So in case A above this parameter should be returned immediately�
In case B� the parser should be called recursively to get the parse tree� t� say� of
the second argument of op and then BinOp�op�t�t� returned�

With this explanation� I hope the ML code to achieve this is comprehensible�

���fun Parser tab m t �� � �t� ��
$ Parser tab m t �inp as next��rest �

if InTable tab next
then let val n � Lookup tab next

in if �m�int � n
then �t� inp
else let val �t��rest� � Parser tab n Nil rest

in Parser tab m �BinOp�next�t� t� rest� end
end

else Parser tab m �Atom next rest�
� val Parser � fn
� � �string � int list
� �� int �� tree �� string list �� tree � string list

val Parse � Parser BinopTable � Nil�
� val Parse � fn � string list �� tree � string list

Here are some examples�

���Parse ��x�������y�������z���
� val it � �BinOp �����BinOp �����Atom �x��Atom �y��Atom �z����

Parse ��x�������y�������z���
� val it � �BinOp �����Atom �x��BinOp �����Atom �y��Atom �z����

Parse ��x�������y�������z���
� val it � �BinOp �����Atom �x��BinOp �����Atom �y��Atom �z����
� � tree � string list

The last of these examples shows that binary operators are parsed as right asso�
ciative� This is because � is used to compare the current precedence with that of
an encountered operator� Since m�m is always false� the e�ect is as though the the
operator on the left is not of higher precedence than the one on the right� hence
right associativity� If � is changed to �� then operators will parse as left associative�
The general case where some operators are left associative and some right associa�
tive can be handled by giving operators both left and right precedences� This is
considered in Section ����

A property of the above parser is that if next is not a known operator
i�e� is not
in tab�� then the last parse tree parsed
viz t� is thrown away�

��	Parse ��x���y���z���
� val it � �Atom �z���� � tree � string list

Instead of doing this� juxtaposed expressions without any intervening binary op�
erators can be interpreted as function applications� First� parse trees have to be
updated to permit this�

���datatype tree � Nil
$ Atom of string
$ Comb of tree � tree
$ BinOp of string � tree � tree�

Then the last line of Parser is modi�ed�

	� Chapter �� Case study �� parsing

���fun Parser tab m t �� � �t� ��
$ Parser tab m t �inp as next��rest �

if InTable tab next
then let val n � Lookup tab next

in if �m�int � n
then �t� inp
else let val �t��rest� � Parser tab n Nil rest

in Parser tab m �BinOp�next�t� t� rest� end
end

else Parser tab m �Comb�t� Atom next rest�
� val Parser � fn
� � �string � int list
� �� int �� tree �� string list �� tree � string list

val Parse � Parser BinopTable � Nil�
� val Parse � fn � string list �� tree � string list

This almost works�

���Parse ��x���y���z���
� val it � �Comb �Comb �Comb �Nil�Atom �x��Atom �y��Atom �z����

The usual trick of using MkComb instead of Comb is needed�

���fun MkComb�Nil�t� � t�
$ MkComb p � Comb p�

fun Parser tab m t �� � �t� ��
$ Parser tab m t �inp as next��rest �

if InTable tab next
then let val n � Lookup tab next

in if �m�int � n
then �t� inp
else let val �t��rest� � Parser tab n Nil rest

in Parser tab m �BinOp�next�t� t� rest� end
end

else Parser tab m �MkComb�t� Atom next rest�

val Parse � Parser BinopTable � Nil�

This works�

���Parse ��x���y���z���
� val it � �Comb �Comb �Atom �x��Atom �y��Atom �z����

Parse ��x���y�������z���
� val it � �BinOp �����Comb �Atom �x��Atom �y��Atom �z����
� � tree � string list

Notice that function application binds tighter than binary operators� which is nor�
mally what is wanted
though achieved here in a rather ad hoc and accidental
manner�� Two things that Parse doesn�t handle are unary operators and brackets�

The datatype of parse trees needs to be adjusted to handle unary operators�

���datatype tree � Nil
$ Atom of string
$ Comb of tree � tree
$ Unop of string � tree
$ BinOp of string � tree � tree�

fun MkComb�Nil�t� � t�
$ MkComb p � Comb p�

���� Simple special cases of parsing 	�

Unary operators need a precedence� If � has higher precedence than � then �x�y

parses as BinOp����� Unop����� Atom �x�� Atom �y�� If � has lower precedence
than � then �x�y parses as Unop����� BinOp����� Atom �x�� Atom �y��

The precendences of unary operators will be held in a table�

���val UnopTable �
������ ��
����� ���

Parsing is now straightforward� both the unary and binory operator tables need to
be passed to Parser and an extra clauses is added to test for unary operators�

���fun Parser �tab as �utab�btab m t �� � �t� ��
$ Parser �tab as �utab�btab m t �inp as next��rest �

if InTable utab next
then let val n � Lookup utab next

in let val �t��rest� � Parser tab n Nil rest
in Parser tab m �MkComb�t� Unop�next�t� rest� end

end
else if InTable btab next

then let val n � Lookup btab next
in if �m�int � n

then �t� inp
else let val �t��rest� � Parser tab n Nil rest

in Parser tab m �BinOp�next�t� t� rest� end
end

else Parser tab m �MkComb�t� Atom next rest�

� val Parse � Parser �UnopTable�BinopTable � Nil�

Here are some examples�

���Parse ��x���
� val it � �Atom �x���� � tree � string list
Parse ������x���
val it � �Unop �����Atom �x���� � tree � string list

Parse ������x�������y���
� val it � �BinOp �����Unop �����Atom �x��Atom �y����

Parse ������x�������y���
� val it � �Unop �����BinOp �����Atom �x��Atom �y����

Brackets can be handled in the same way as they were for
left associated� applica�
tive expressions�

	� Chapter �� Case study �� parsing

��	fun Parser �tab as �utab�btab m t �� � �t� ��
$ Parser tab m t ����������rest � Parser tab m �Comb�Atom ���t rest
$ Parser tab m t �inp as ����� � �t� inp
$ Parser tab m t ������rest �

�case Parser tab � Nil rest
of �t�� ����rest� �� Parser tab m �MkComb�t�t� rest�
$ � �� raise MissingClosingBracket

$ Parser �tab as �utab�btab m t �inp as next��rest �
if InTable utab next
then let val n � Lookup utab next

in let val �t��rest� � Parser tab n Nil rest
in Parser tab m �MkComb�t� Unop�next�t� rest� end

end
else if InTable btab next

then let val n � Lookup btab next
in if �m�int � n

then �t� inp
else let val �t��rest� � Parser tab n Nil rest

in Parser tab m �BinOp�next�t� t� rest� end
end

else Parser tab m �MkComb�t� Atom next rest�

val Parse � Parser �UnopTable�BinopTable � Nil�

Here are some more examples�

���fun P s � Parse�explode s�
� val P � fn � string �� tree � string list

P ���x�y��
� val it � �Unop �����BinOp �����Atom �x��Atom �y����

P ���x�y��
� val it � �BinOp �����Unop �����Atom �x��Atom �y����

P ��x�y�zw��
� val it �
� �Comb �BinOp �����Atom �x��Atom �y��Comb �Atom �z��Atom �w����

��� A general top�down precedence parser

The parser just given works by looking at the next item being input and then invokes
some action� which depends on the item� to parse the rest of the input� A more
general scheme is to associate actions with items and then to have a simple parsing
loop that consists in repeatedly reading an item and then executing the associated
action��

A rather general datatype of parse trees is the following�

���datatype tree � Nil
$ Atom of string
$ Comb of tree � tree
$ Node of string � tree list�

Unary operator expressions will parse to trees of the form Node�name��arg� and
binary operator expressions to trees of the form Node�name��arg��arg���

The familiar MkComb hack will be needed� The empty parse tree Nil should never
arise as the right component of a combination
since left associative application will
be adopted�� so an exception will be raised if it does�

�The parser described here is loosely based on Vaughan Pratt�s CGOL system �MIT� ��
���

���� A general top�down precedence parser 	�

���exception NilRightArg�

fun MkComb�Nil�t� � t�
$ MkComb�t
�Nil � raise NilRightArg
$ MkComb�t
� t� � Comb�t
�t��

The action associated with an item may involve recursive calls to the parser� To
handle this the techique described earlier of passing a parse function as an argument
can be used
see BuildComb and CheckSym described above�� The type of parse
functions is given by the the following type abbreviation�

���type parser � int �� tree �� string list �� tree � string list�

Selected input items will have precedences and actions associated with them� Prece�
dences are integers� Intuitively� actions are represented by a functions of type
parser� However� since an action might need to recursively invoke the whole parser�
it should be passed a parsing function� In general� an action must be represented
by a function of type parser��parser� A symbol table associates precedences and
actions to strings�

���type symtab � string �� int � �parser �� parser�

The main parsing function is now very simple� since all the detail has been hived�o�
into the symbol table�

���fun Parser symtab �m�int t �� � �t���
$ Parser symtab m t �inp as next��rest �

let val �n�parsefn � symtab next
in if m��n then �t�inp

else parsefn �Parser symtab m t inp
end�

The parse stops on the empty string� If the input isn�t empty� then the next item
is looked up in the symbol table� Left association will be taken as the default� so if
the current precedence equals or exceeds the precedence of the next item� then the
parse stops and the last item parsed
t� is returned� with the rest of the input� If
the current precedence is less than the precedence of the next item� then the parse
action associated with the next item in the symbol table is executed� The parse
function Parser symtab is passed to the parse action� so that it can
if necessary�
invoke the whole parse recursively�

The de�nition of Parser intuitively has type symtab��parser� However� the actual
type assigned by ML is more general�

��a

�� int

� ��int �� �b �� �a list �� �b � �a list

�� int �� �b �� �a list �� �b � �a list

�� int �� �b �� �a list �� �b � �a list

To constrain the types so that typechecking yields the intuitive type requires some
contortions� The following does it�

	� Chapter �� Case study �� parsing

���fun Parser �tab�symtab � parser �
fn m
�� fn t

�� fn �� �� �t���
$ �inp as next��rest ��

let val �n�parsefn � tab next
in if m��n then �t�inp

else parsefn �Parser tab m t inp
end�

� val Parser � fn � symtab �� parser

Standard ML seems rather worse than its predecessors in the �exibility it allows for
writing type constraints�

Notice that every input item is supposed to have an entry in the symbol table� The
kind of items that might be encountered include atoms� unary operators� binary
operators� brackets
both opening and closing� and keywords associated with other
kinds of constructs
e�g� if� then� else� while��

Generic functions to construct appropriate symbol table entries for these will now
be described�

The parser is initially invoked with a speci�c symbol table� precedence � and t set
to Nil�

The action associated with an atom� a say� is just to return Atom a� Since the atom
may be the argument of some preceding function� whose parse tree will be bound
to t� the parse tree that is actually returned by the parse action of an atom is
MkComb�t�Atom a�

���fun ParseAtom parse p t �next��rest �
parse p �MkComb�t�Atom next rest�

The action associated with an opening bracket is to recursively call the parser� check
that there is a matching closing bracket� remove it� and then continue the parse�
The function ParseBracket below is the action invoked by an opening bracket� It
takes as a parameter the closing bracket it should check for� The parse tree t is
combined� using MkComb� with the parse tree t� of the stu� parsed inside of the
brackets� If t is Nil then the de�nition of MkComb ensures that t� becomes the new
�last�thing�parsed� bound to t in the rest of the parse� However if t is not Nil� then
what is being parsed must have the form e� �e�� where t is the parse tree of e�� so
a combination is generated
namely� the parse tree of e� applied to the parse tree
of e���

���exception MissingClosingBracket�

fun ParseBracket close parse p t ����rest �
let val �t�� next���rest� � parse � Nil rest
in if close�next� then parse p �MkComb�t�t� rest�

else raise MissingClosingBracket
end�

One can ensure that the parsing initiated by an opening bracket will terminate at
a closing bracket by giving the closing bracket a su�ciently low precedence in the
symbol table
e�g� ��� Closing brackets should always terminate the current parse�
so it is an error to try to execute the parse acton associated with them in the symbol
table
the type of the symbol table is such that all items have some action $ in the
case of closing brackets this should never actually be invoked��

��	exception TerminatorParseErr�

fun Terminator parse � � raise TerminatorParseErr�

���� A general top�down precedence parser 	�

The next function provides a rather general way of specifying parser actions� The
idea is that to parse a given kind of construct the parser is called recursively to get
each constituent and then a node containing the resulting constituent parse trees is
returned� Each recursive invokation of the parser might require some local checking
for keywords etc� For example� to parse if e then e� else e� the parser is called
to get the parse tree of the e� then the presence of then is checked
then must be
a terminator� and it is removed� then the parser is invoked to get the parse tree
for e�� then the presence of else is checked
else must be a terminator� and it it
removed� then the parser is invoked again to get the parse tree of e� and �nally a
node like Node��COND�� �t�t
�t�� is returned�

The function ParseSeq below takes a constructor function mktree
for building a
node�� invokes the parser a number of times and then builds a parse tree by applying
mktree to the resulting constituent parse trees�

Each invokation of the parser can be �wrapped around� with some extra checking
activity� This is speci�ed by providing a list of functions of type parser��parser�
applying such a function to a parser produces a new parser with the checking added
on� The simplest case of this is no checking� which is speci�ed by the identity
function�

���fun Id x � x�

ChkAft is used to modify a parser to check that a given keyword occurs after the
parser is invoked� If p�parser is a parser function� then ChkAft s p is a parser
function that �rst invokes p� then checks for s and deletes it if found and raises an
exception otherwise�

���exception ChkAftErr�

fun ChkAft s parse m t inp �
case parse m t inp
of �t�� s���rest �� if s�s� then �t��rest else raise ChkAftErr�

The function ParseSeq below takes a parse tree constructor function mktree of type
tree � tree list �� tree for building a node� The �rst parse tree is the one passed
as a parameter
t� to the parser and the list of parse trees are the constituents that
have just been parsed�

Constructors for building parse trees of unary operator expressions and binary op�
erator expressions are MkUnop and MkBinop� respectively�

Suppose u is a unary operator and consider e� u e�� this should parse to
Comb��e�� Unop�u� �e�� where �e� and �e� are the parse trees of e� and e�� respec�
tively� The parse tree constructor for unary operators is thus�

���fun MkUnop unop �t�tl � MkComb�t�Node�unop�tl�

Suppose b is a binary operator and consider e� b e�� this should parse to
Binop�b� �e�� �e�� where �e� and �e� are the parse trees of e� and e�� respectively�
The parse tree constructor for binary operators is thus�

���fun MkBinop bnop �t�tl � Node�bnop�t��tl�

The function ParseSeq also takes as a parameter a list of parser transformations

e�g� Id or ChkAft f� and returns a parser that recursively invokes the parser once
for each parser transformation and then builds a parse tree using mktree applied

	� Chapter �� Case study �� parsing

to the resulting constituent parse trees� For example� the parsing of conditionals is
speci�ed by�

�ChkAft �then�� ChkAft �else�� Id�

ParseSeq uses an auxiliary function ParseSeqAux that iterates down the list of sup�
plied parse tree transformers invoking them in turn� The de�nitions are short� but
admittedly cryptic� To try to improve their readability type constraints have been
added to constrain excess polymophism� Without the constraints� ParseSeq gets the
incomprehensibly general type�

�tree � �a list �� �b

�� int

�� ��int �� �b �� �c list �� �d

�� int �� tree �� �c list �� �a � �c list list

�� �int �� �b �� �c list �� �d �� int �� tree �� �c list �� �d

with the constraints the type is�

�tree � tree list �� tree

�� int �� �parser �� parser list �� parser �� parser

Unfortunately� as with Parser� it is necesary to go to some contortions to achieve
this type constraint� Instead of writing�

ParseSeq mktree m fl parse n t ����rest � ���

It is necessary to write

fun ParseSeq mktree m fl parse �

fn n �� fn t �� fn ����rest �� ���

and then add the type constraints shown below�

���fun ParseSeqAux m �f�parser��parser� �parse�parser n inp �
let val �t� rest
 � f parse m Nil inp
in ��t�� rest
 end

$ ParseSeqAux m �f��fl � �parser��parserlist parse n inp �
let val �t� rest
 � f parse � Nil inp
in let val �l�rest� � ParseSeqAux m fl parse � rest

in �t��l� rest� end
end�

fun ParseSeq mktree m �fl��parser��parserlist �parse�parser � parser �
fn n �� fn t �� fn ����rest ��
let val �l�rest
 � ParseSeqAux m fl parse n rest
in parse n �mktree�t�l rest
 end�

A symbol table is a function of type string �� int � �parser �� parser� Here is
an example�

���fun SymTab ��� � ��� ParseSeq �MkBinop �MULT� � �Id�
$ SymTab ��� � ��� ParseSeq �MkBinop �ADD� � �Id�
$ SymTab ��� � �
�� ParseSeq �MkUnop �MINUS� 	 �Id�
$ SymTab �if� � �
�� ParseSeq �MkUnop �COND� � �ChkAft �then��

ChkAft �else��
Id�

$ SymTab ��� � �
�� ParseBracket ��
$ SymTab �� � ��� Terminator
$ SymTab �then� � ��� Terminator
$ SymTab �else� � ��� Terminator
$ SymTab x � �
�� ParseAtom�

���� A general top�down precedence parser 	

Notice that the left precedence of � is � which is the same as its right precedence�
However� the left precedence of � is � which is greater than its right precedence
�� The e�ect of this is to make � left associative and � right associative� In gen�
eral� if the left precedence is less than or equal to the right precedence� then left
associativity results� otherwise right associativity results�

The complete parser P de�ned below uses the lexical analyser Lex and the symbol
table above� Assume the code for Lex� as described in Section ���� is in the �le
Lex�ml�

���use �Lex�ml��

val P � Parser SymTab � Nil o Lex�
� val P � fn � string �� tree � string list

P �f if x then y � z else y � z��
� val it �
� �Comb
� �Atom �f��
� Node
� ��COND��
� �Atom �x��Node ��ADD���Atom �y��Atom �z���
� Node ��MULT���Atom �y��Atom �z������

		 Chapter �� Case study �� parsing

Chapter �

Case study �� the ��calculus

It is assumed that integers and
unary and binary� operations over integers are
primitive� The type atom packages these up into a single datatype� Both unary
operator atoms
Op
� and binary operator atoms
Op�� have a name and a semantics�

���datatype atom � Num of int
$ Op
 of string � �int��int
$ Op� of string � �int�int��int�

The application of an atomic operation to a value is de�ned by the function ConApply

see below�� The application of a binary operator b to m results in a unary operator
named mb expecting the other argument�

To convert the argument m to a string that can be concatenated with the name of the
operator� a function to convert a number to a string giving its decimal representation
is de�ned�

���fun StringOfNum � � ���
$ StringOfNum
 � �
�
$ StringOfNum � � ���
$ StringOfNum � � ���
$ StringOfNum � � ���
$ StringOfNum � � ���
$ StringOfNum � � ���
$ StringOfNum � � ���
$ StringOfNum � � ���
$ StringOfNum 	 � �	�
$ StringOfNum n �

�StringOfNum�n div
� ' �StringOfNum�n mod
��

StringOfNum
����
� val it � �
���� � string

Now ConApply can be de�ned�

��	fun ConApply�Op
���f
� Num m � Num�f
 m
$ ConApply�Op��x�f�� Num m � Op
��StringOfNum m'x� fn n �� f��m�n�

� val ConApply � fn � atom � atom �� atom

ConApply�Op������op �� Num ��
� val it � Op
 ������fn � atom

ConApply�it� Num ��
� val it � Num � � atom

��expressions are represented by the datatype lam�

���datatype lam � Var of string
$ Con of atom
$ App of �lam � lam
$ Abs of �string � lam�

	�

�� Chapter �� Case study �� the ��calculus

��� A ��calculus parser

It is convenient to have a ��calculus parser� Assume the code of the parser described
in Section ��� is in the �le Parser�ml�

���use �Parser�ml��

A sutable symbol table for the ��calculus is�

���fun LamSymTab ��� � ��� ParseSeq �MkBinop �MULT� � �Id�
$ LamSymTab ��� � ��� ParseSeq �MkBinop �ADD� � �Id�
$ LamSymTab ��� � ��� Terminator
$ LamSymTab �%%� � �
�� ParseSeq�MkUnop �Abs� � �ChkAft ���� Id�
$ LamSymTab ��� � �
�� ParseBracket ��
$ LamSymTab �� � ��� Terminator
$ LamSymTab x � �
�� ParseAtom�

Note that �%%� is our ASCII representation of �� This is actually just a single
backslash� the �rst one is the escape character needed to include the second one in
the string�

The following function lexically analyses and then parses a string
recall that Parser
returns a parse tree and the remaining input��

���fun ParseLam s �
let val �t��� � Parser LamSymTab � Nil �Lex s
in t end�
� Warning� binding not exhaustive
� val ParseLam � fn � string �� tree

ParseLam ��%%x�x�
 �����
� val it �
� Comb �Node ��Abs���Atom �x��Node ��ADD���Atom �x��Atom �
����
� Atom �����
� � tree

The output of ParseLam is an element of the general purse parse tree type tree

de�ned on page 	�� This is easily converted to type lam� A function for testing
whether a string represents a number
i�e� is a string of digits� is needed�

���fun IsNumber s �
let fun TestDigList �� � true

$ TestDigList �x��l � IsDigit x andalso TestDigList l
in TestDigList�explode s
end�
� val IsNumber � fn � string �� bool

If a string represents a number then the following provides a way of converting it
to a number
i�e� value of type int��

���� A ��calculus parser ��

���fun DigitVal ��� � �
$ DigitVal �
� �

$ DigitVal ��� � �
$ DigitVal ��� � �
$ DigitVal ��� � �
$ DigitVal ��� � �
$ DigitVal ��� � �
$ DigitVal ��� � �
$ DigitVal ��� � �
$ DigitVal �	� � 	�

� Warning� match nonexhaustive
� val DigitVal � fn � string �� int

fun NumOfString s �
let fun ListVal �� � �

$ ListVal �x��l � DigitVal x �
� � �ListVal l
in ListVal�rev�explode s
end�

� val NumOfString � fn � string �� int

NumOfString ����
��
� val it � ���
 � int

Armed with this string�to�number converter� it is routine to convert values of type
tree to values of type lam� The fourth clause of the de�nition of Convert below is
a little hack to make� %x
 x� ��� xn� e parse as� %x
�%x�� ��� %xn� e� This hack
makes use of the fact that sequences of variables parse as left�associated applications�

���ParseLam �%%x y z� w��
� val it � Node ��Abs���Comb �Comb �Atom �x��Atom �y��Atom �z��Atom �w��

���fun Convert �Atom x �
if IsNumber x then Con�Num�NumOfString x else Var x

$ Convert �Comb�a�b �
App�Convert a� Convert b

$ Convert �Node��Abs���Atom x� a� �
Abs�x�Convert a

$ Convert �Node��Abs���Comb�a
� Atom x� a�� �
Convert�Node��Abs���a
� Node��Abs���Atom x�a���

$ Convert �Node��ADD���a�b� �
App�App�Con�Op�������op�� Convert a� Convert b�

� Warning� match nonexhaustive
� val Convert � fn � tree �� lam

The function PL
for Parse Lambda expression!� parses a string and then converts
it to a value of type lam�

���val PL � Convert o ParseLam�
� val PL � fn � string �� lam

PL �x�y��
� val it � App �App �Con �Op� fn�Var �x��Var �y� � lam

PL ��%%x�x�y y��
� val it �
� App �Abs ��x��App �App �Con �Op� fn�Var �x��Var �y��
� Var �y�
� � lam

Here is the �xed�point operator Y
see Section �����

�� Chapter �� Case study �� the ��calculus

��	PL �%%f� �%%x f��%%z�x x f �%%x f��%%z�x x f��
� val it �
� Abs
� ��f��
� App
� �Abs ��x��Abs ��f��Abs ��z��App �App �Var �x��Var �x��Var �f��
� Abs ��x��Abs ��f��Abs ��z��App �App �Var �x��Var �x��Var �f�
� � lam

An �unparser�
or �pretty�printer�� will be useful for viewing elements of type lam�
The one that follows
UPL� is rather crude $ for example� it does not attempt to
format expressions across lines� though it does at leat avoid putting brackets around
variables�

The name UPL stands for UnParse Lambda expression! and BUPL for Bracket and
UnParse Lambda expression!�

���fun UPL �Var x � x
$ UPL �Con�Num n � StringOfNum n
$ UPL �Con�Op
�x�� � x
$ UPL �Con�Op��x�� � x
$ UPL �App�Con�Op
�x���e � x ' � � ' BUPL e
$ UPL �App�App�Con�Op��x���e
�e� � BUPL e
 ' x ' BUPL e�
$ UPL �App�e
�e� � UPL e
 ' � � ' BUPL e�
$ UPL �Abs�x�e � ��%%� ' x ' �� � ' UPL e ' ��

and BUPL�Var x � x
$ BUPL�Con�Num n � StringOfNum n
$ BUPL e � ��� ' UPL e ' ���

��� Implementing substitution

Recall the de�nition of substitution on page ���

E E�E��V �

V E�

V �
where V �� V �� V �

E� E� E��E
��V � E��E

��V �

�V� E� �V� E�

�V �� E�
where V �� V � and �V �� E��E
��V �

V � is not free in E��

�V �� E�
where V �� V � and �V ��� E��V
���V ���E��V �

V � is free in E�� where V �� is a variable
not free in E� or E�

This is easily implemented in ML� Some auxiliary set�theoretic functions on lists
are needed
some of which have been met before�� First a test for membership�

���fun Mem x �� � false
$ Mem x �x���s � �x�x� orelse Mem x s�

� val Mem � fn � ��a �� ��a list �� bool

���� Implementing substitution ��

Note that the union of two lists de�ned below does not introduce duplicates�

���fun Union �� l � l
$ Union �x��l
 l� �

if Mem x l� then Union l
 l� else x���Union l
 l��
� val Union � fn � ��a list �� ��a list �� ��a list

Union �
��������� ��������������
� val it � �
������������� � int list

Subtract l
 l� removes all members of l� from l

i�e� is �l
 minus l����

���fun Subtract �� l � ��
$ Subtract �x��l
 l� �

if Mem x l� then Subtract l
 l� else x���Subtract l
 l��
� val Subtract � fn � ��a list �� ��a list �� ��a list

Subtract �
��������� ����������
� val it � �
��� � int list

Using Mem� Union and Subtract the function Frees to compute a list of the free
variables in a ��expression is easily de�ned�

���fun Frees �Var x � �x�
$ Frees �Con c � ��
$ Frees �App�e
�e� � Union �Frees e
 �Frees e�
$ Frees �Abs�x�e � Subtract �Frees e �x��

� val Frees � fn � lam �� string list

PL �%%x�x�y��
� val it � Abs ��x��App �App �Con �Op� fn�Var �x��Var �y� � lam

Frees it�
� val it � ��y�� � string list

Substitution needs to rename variables to avoid �capture�� This will be done by
priming them�

���fun Prime x � x'����

Prime �x��
� val it � �x�� � string

Variant xl x primes x su�cient number of times so that the result does not occur
in the list xl�

���fun Variant xl x �
if Mem x xl then Variant xl �Prime x else x�

� val Variant � fn � string list �� string �� string

Variant ��x���y���z���y����w�� �y��
� val it � �y��� � string

Now� at last� substitution can be de�ned� Subst E E� V computes E�E��V� according
to the table above�

�� Chapter �� Case study �� the ��calculus

���fun Subst �e as Var x� e� x � if x�x� then e� else e
$ Subst �e as Con c e� x � e
$ Subst �App�e
� e� e� x � App�Subst e
 e� x� Subst e� e� x
$ Subst �e as Abs�x��e
 e� x �

if x�x� then e
else if Mem x� �Frees e�

then let val x�� � Variant �Frees e� Frees e
 x�
in Abs�x��� Subst�Subst e
 �Var x�� x� e� x
end

else Abs�x�� Subst e
 e� x�
� val Subst � fn � lam �� lam �� string �� lam

Here are some examples�

���Subst �PL��%%x�x�y x� �PL�
� �x��
� val it �
� App �Abs ��x��App �App �Con �Op� fn�Var �x��Var �y��
� Con �Num

� � lam

UPL it�
� val it � ��%%x� x�y�
� � string

UPL�Subst �PL�%%x�x�y� �PL�x�
� �y��
� val it � ��%%x�� x���x�
� � string

A function EvalN can now be de�ned to do normal order reduction
sometimes called
�call�by�name� ������ Note that the evaluation does not �go inside� ��bodies� so does
not compute normal forms�

��	fun EvalN �e as Var � � e
$ EvalN �e as Con � � e
$ EvalN �Abs�x�e � Abs�x� e
$ EvalN �App�Con a
� Con a� � Con�ConApply�a
�a�
$ EvalN �App�e
�e� �

case EvalN e

of �Abs�x�e� �� EvalN�Subst e� e� x
$ �e
� as Con a
 �� �case EvalN e�

of �Con a� �� Con�ConApply�a
�a�
$ e�� �� App�e
��e��

$ e
� �� App�e
�� EvalN e��
� val EvalN � fn � lam �� lam

Here is a typical example that only terminates with normal order evaluation�

���EvalN �PL��%%x�
 ��%%x� x x �%%x� x x��
� val it � Con �Num
 � lam

val true � !
x y z�w!

��� The SECD machine

Call�by�value evaluation can be programmed with the function EvalV�

���� The SECD machine ��

���fun EvalV �e as Var � � e
$ EvalV �e as Con � � e
$ EvalV �e as Abs���� � e
$ EvalV �App�e
�e� �

let val e�� � EvalV e�
in
�case EvalV e

of �Abs�x�e� �� EvalV�Subst e� e�� x
$ �e
� as Con a �� �case e��

of �Con a� �� Con�ConApply�a
�a�
$ � �� App�e
��e��

$ e
� �� App�e
��e��
end�

The SECD machine is a classical virtual machine for reducing ��expressions using
call�by�value� It was developed in the �����s by Peter Landin and has been analysed
by Gordon Plotkin ����� Various more recent practical vitual machines for ML are
descendents of the SECD machine�

The name SECD comes from Stack� Environment� Control and Dump which are
the four components of the machine state�

The stack of an SECD machine holds a sequence
represented by a list� of atoms and
closures� The environment provides values of variables� A closure is an abstraction
paired with an environment� The mutually recursive datatypes of item and env

represent items and environments� respectively� Environments are represented by
association lists of variables
represented by strings� and and items�

���datatype item � Atomic of atom
$ Closure of �lam � env

and env � EmptyEnv
$ Env of string � item � env�

The function Lookup looks up the value of a variable in an environment
and raises
an exception is the variable doesn�t have a variable��

���exception LookupErr�

fun Lookup�s�EmptyEnv � raise LookupErr
$ Lookup�s�Env�s��i�env � if s�s� then i else Lookup�s�env�

The control of an SECD is a sequence
represented by a list� of instructions which
are either the special operation Ap or a ��expression�

���datatype instruction � Ap $ Exp of lam�

A datatype state that represents SECD machine states can now be de�ned�

���type stack � item list
and control � instruction list�

datatype state � NullState
$ State of �stack � env � control � state�

The transitions of the SECD machine are given by the function Step�

�� Chapter �� Case study �� the ��calculus

���fun Step�State�v��S� E� ��� State�S��E��C��D� �
State�v��S�� E�� C�� D�

$ Step�State�S� E� Exp�Var x��C� D �
State�Lookup�x�E��S� E� C� D

$ Step�State�S� E� Exp�Con v��C� D �
State�Atomic v��S� E� C� D

$ Step�State�S� E� Exp�Abs�x�e��C� D �
State�Closure�Abs�x�e�E��S� E� C� D

$ Step�State�Closure�Abs�x�e�E����v��S� E� Ap��C� D �
State���� Env�x�v�E�� �Exp e�� State�S�E�C�D

$ Step�State�Atomic v
���Atomic v���S� E� Ap��C� D �
State�Atomic�ConApply�v
�v���S� E� C� D

$ Step�State�S� E� Exp�App�e
�e���C� D �
State�S� E� Exp e����Exp e
���Ap��C� D�

The function Run iterates Step until a �nal state is reached and then returns a list
of all the intermediate states�

���fun Run�state as State�����EmptyEnv����NullState � �state�
$ Run state � state��Run�Step state�
� val Run � fn � state �� state list

The function Eval takes a ��expression and evaluates it using the SECD machine�

���fun Eval e �
let fun EvalAux�State��v��EmptyEnv����NullState � v

$ EvalAux state � EvalAux�Step state
in EvalAux�State����EmptyEnv��Exp e��NullState end�
� val Eval � fn � lam �� item

Load loads a lambda�expression into an SECD state ready for running�

��	fun Load e � State����EmptyEnv��Exp e��NullState�
� val Load � fn � lam �� state

SECDRun parses a string� loads the resulting ��expression into an SECD state and
then runs the result� SECDEval is similar� but it just Evals the result�

���fun SECDRun s � Run�Load s�
� val SECDRun � fn � lam �� state list

fun SECDEval s � Eval�PL s�
� val SECDEval � fn � string �� item

SECDEval ��%%x�%%y� x�y
 ���
� val it � Atomic �Num � � item

Bibliography

��� Augustsson� L�� �A compiler for lazy ML�� in Proceedings of the ACM Sympo�

sium on LISP and Functional Programming� Austin� pp� ��	���� ��	��

��� Barendregt� H�P�� The Lambda Calculus
revised edition�� Studies in Logic
���� North�Holland� Amsterdam� ��	��

��� Barron� D�W� and Strachey� C� �Programming�� in Fox� L�
ed��� Advances in
Programming and Non�numerical Computation
Chapter ��� Pergamon Press�
�����

��� Bird� R� and Wadler� P�� An Introduction to Functional Programming� Prentice
Hall� ��		�

��� Boyer� R�S� and Moore� J S�� A Computational Logic� Academic Press� ����

��� De Bruijn� N�G�� �Lambda calculus notation with nameless dummies� a tool for
automatic formula manipulation�� Indag� Math�� ��� pp� �	������ ����

�� Burge� W�� Recursive Programming Techniques� Addison�Wesley� ����

�	� Clarke� T�J�W�� et al�� �SKIM $ the S� K� I Reduction Machine�� in Proceedings

of the ���� ACM LISP Conference� pp� ��	����� ��	��

��� Curry� H�B� and Feys� R�� Combinatory Logic� Vol� I� North Holland� Amster�
dam� ���	�

���� Curry� H�B�� Hindley� J�R� and Seldin� J�P� Combinatory Logic� Vol� II� Studies
in Logic ��� North Holland� Amsterdam� ����

���� Fairbairn� J� and Wray� S�C�� �Code generation techniques for functional lan�
guages�� in Proceedings of the ���� ACM Conference on LISP and Functional

Programming� Cambridge� Mass�� pp� ������� ��	��

���� Gordon� M�J�C�� �On the power of list iteration�� The Computer Journal� ���
No� �� ����

���� Gordon� M�J�C��The Denotational Description of Programming Languages�
Springer�Verlag� ����

���� Gordon� M�J�C�� Programming Language Theory and its Implementation�
Prentice Hall International Series in Computer Science� ��		
out of print��

���� Gordon� M�J�C�� Milner� A�J�R�G� and Wadsworth� C�P�� Edinburgh LCF� a

mechanized logic of computation� Springer Lecture Notes in Computer Science�
Springer�Verlag� ����

���� Henderson� P�� Functional Programming� Application and Implementation�
Prentice Hall� ��	��

�

�	 Bibliography

��� Henderson� P� and Morris� J�M�� �A lazy evaluator�� in Proceedings of The Third
Symposium on the Principles of Programming Languages� Atlanta� Georgia�
pp� ������� ����

��	� Hindley� J�R�� �Combinatory reductions and lambda�reductions compared��
Zeitschrift f	ur Mathematische Logik und Grundlagen der Mathematik� ��� pp�
�����	�� ���

���� Hindley� J�R� and Seldin� J�P�� Introduction to Combinators and ��Calculus�
London Mathematical Society Student Texts� �� Cambridge University Press�
��	��

���� Hughes� R�J�M�� �Super combinators� a new implementation method for ap�
plicative languages�� in Proceedings of the ���
 ACM Symposium on LISP and

Functional Programming� Pittsburgh� ��	��

���� Kleene� S�C�� ���de�nability and recursiveness�� Duke Math� J�� pp� ��������
�����

���� Krishnamurthy� E�V� and Vickers� B�P�� �Compact numeral representation with
combinators�� The Journal of Symbolic Logic� ��� No� �� pp� �������� June
��	�

���� Lamport� L�� LATEX� A Document Preparation System� Addison�Wesley� ��	��

���� Landin� P�J�� �The next �� programming languages�� Comm� Assoc� Comput�

Mach�� 	� pp� ������� �����

���� Levy� J��J�� �Optimal reductions in the lambda calculus�� in Hindley� J�R� and
Seldin� J�P�
eds�� To H�B� Curry� Essays on Combinatory Logic� Lambda�

Calculus and Formalism� Academic Press� New York and London� ��	��

���� Mauny� M� and Su%arez� A�� �Implementing functional languages in the categor�
ical abstract machine�� in Proceedings of the ���� ACM Conference on LISP

and Functional Programming� pp� �����	� Cambridge� Mass�� ��	��

��� Milner� A�J�R�G�� �A proposal for Standard ML�� in Proceedings of the ACM

Symposium on LISP and Functional Programming� Austin� ��	��

��	� Morris� J�H�� Lambda Calculus Models of Programming Languages� Ph�D� Dis�
sertation� M�I�T�� ���	�

���� Peyton Jones� S�L�� The Implementation of Functional Programming Lan�

guages� Prentice Hall� ��	�

���� Plotkin� G�D�� �Call�by�name� call�by�value and the ��calculus�� Theoretical
Computer Science� �� pp ���$���� ����

���� Sch�on�nkel� M�� ��Uber die Bausteine der mathematischen Logik�� Math� An�

nalen 	�� pp� �������� ����� Translation printed as �On the building blocks of
mathematical logic�� in van Heijenoort� J�
ed��� From Frege to G	odel� Harvard
University Press� ����

���� Scott� D�S�� �Models for various type free calculi�� in Suppes� P� et al�
eds��
Logic� Methodology and Philosophy of ScienceIV� Studies in Logic �� North�
Holland� Amsterdam� ����

���� Stoy� J�E�� Denotational Semantics� The Scott�Strachey Approach to Program�

ming Language Theory� M�I�T� Press� ���

Bibliography ��

���� Turner� D�A�� �A new implementation technique for applicative languages��
Software Practice and Experience� 	� pp� ������ ����

���� Turner� D�A�� �Another algorithm for bracket abstraction�� The Journal of Sym�

bolic Logic� ��� No� �� pp� ������ June ����

���� Turner� D�A�� �Functional programs as executable speci�cations�� in Hoare�
C�A�R� and Shepherdson� J�C�
eds�� Mathematical Logic and Programming

Languages� Prentice Hall� ��	��

��� Wadsworth� C�P�� �The relation between computational and denotational prop�
erties for Scott�s D��models of the lambda�calculus�� S�I�A�M� Journal of Com�

puting� �� pp� �		����� ����

��	� Wadsworth� C�P�� �Some unusual ��calculus numeral systems�� in Hindley� J�R�
and Seldin� J�P�
eds�� To H�B� Curry� Essays on Combinatory Logic� Lambda�

Calculus and Formalism� Academic Press� New York and London� ��	��

