
Popa Dan fullpaper template.pdf

ARTICLE’S TITLE Adaptable Software – Modular extensible monadic evaluator
and typechecker based on pseudoconstructors

Dan Popa
* “Vasile Alecsandri” University of Bacau, Romania

Abstract. This paper is investigating the use of pseudoconstructors (a monadic data structure which acts as an itself evaluator) to be
simultaneously used for evaluation of terms and also for typechecking. This can lead us to the conclusion that we have a new software
technique for modular DSLs building.

AMS Subject Classification (2000): 68Q45,68Q55,18C50
Key words and phrases: pseudoconstructor(s), modular monadic typechecker in Haskell
Keywords: pseudoconstructor(s), modular monadic typechecker in Haskell

1. Introduction
Modular building of domain small languages (DSLs) had
attracted many scientists from decades. We may quote
from papers like [6], [15] , including papers by Hutton and
Meijer [3] [4],[5] to name only some authors. On the other
side, the Haskell language (see Haskell Report[13]), a
language widely used as a DSL for language building, also
widely used for monadic computing (i.e. programming
according to the monadic patterns) is providing the concept
of modules [2] , [14] .

The first problem, when dealing with papers concerned
modular DSL, we had noticed the amazing fact that the
solutions was not modular (in sense of Haskell modules).
We had also noticed that some advanced parser
combinators [3],[4],[5] , and some from [9] was not so
modular as we think they are, because they are producing
trees which are declared using a non-modular data
declaration [14] pp 43-45 (algebraic data declarations). The
problem is closely related to Wadler's Expression Problem.
The problem was solved by us in this – paper - [10] using
pseudoconstructors over monadic values as defined by [8].

Usually, the ASTs (abstract syntax trees) was not modular
– because Haskell did not allow us to spread a tree data
declaration in many Haskell modules. The
pseudoconstructors over monadic values (i.e. monadic
structures which are simultaneously data structures and self
evaluated modular interpreters, see [8]) had offered the
solution and now the trees can be modularly defined even
by spreading the declarations of pseudoconstructors (sse
[8]) over the whole set of modules included by a big
project.

Modular monadic semantics [7], [13] (in ML) when was
(re)implemented using Haskell also failed to be modular in
the sense of Haskell modules (and [14]), due to the data
declarations, too. This leads us to a whole language
implementation , partially introduced by a Ph.D Thesis
[10], [11] based on modular monadic itself evaluators ,
where itself-evaluators are carrying a modular monadic
entry pointless semantic (i.e a semantic without a specific
interpreter function). This solution was used by the Rodin
Project [12].

Because the demo-language Rodin had not included a
typical typechecker (the modular monadic semantics
isolates types very well as monadic values indexed by
types, and also because Rodin was a monotype language
with some type additions - ex. Strings to be printed) we
had concentrated now on the task of building typecheckers
and evaluators based on pseudoconstructors from [8], but
in the same time.
The problem is necessary to be solved: when sticking to the
idea of entry-pointless interpreters and evaluators or
typecheckers, apparently the pseudoconstructors from [8]
have only one semantic. No two different functions:
interpreter and typechecker seems to mean – at first sight
– no two different interpretations possibles. The problem is
to put the same modular monadic structure to do bothe (or
more than one) things. Notice, in this context of discussion,
the code of a pseudoconstructor implementing an itself-
evaluator: it did not have any interpret or typecheck
function defined.

Let's examine it. Basically, such a module looks like here:

<structure> arg1 … arg n =
 do { v1 <- arg1 ;

…
vi <- argi ;
…
vn <- argn ;
return f (v1 … vn) }

Also notice: in an e-mail from Simon Peyton Jones, such
modular piece of software was considered to be carefully
studied, being suspected of not being so usefull in some
cases (for example in code optimization) but this task is
still an open problem for us.
¶Empty space [Times New Roman 11p, single]
2.The as-instance implementation
The Haskell standard language is implementing the concept
of type class and instance of a class. Various instances of
the same class can implement the same interface using
very different semantic functions. We are introducing the
idea of implementing both the modular monadic evaluator
and the typechecker as instances of the same type class.

Speaking of type checker, our starting point is gathered
from [1] but a large set of semantics and books concerning
semantics or lambda calculus may also be used as starting
point.
On the other side, the evaluator is inspired by those used by
the Rodin Project [12] and the chap. 9 from [11] – Ph.D
Thesis.
¶Empty space [Times New Roman 11p, single]
3.Types and values
For typechecking we had used the following type,
representing various results which can be obtained by the
process of typechecking a term built by (as seen in [8])
pseudoconstructors. To simplify, only on simple type,
MyInt was used, but more can be similarly added:

data Type = MyInt
 | TypeError
 | Pair Type Type
 deriving (Show, Eq)

Note that this is not modular, being an usual data
declaration so it should be defined from the beginning.
¶Empty space [Times New Roman 11p, single]
4.Values as support for the evaluation
Inspired by [15] we have used the folowing type, as
implementation of the values provided by evaluation of the
terms. The type below is different than those used by Prof.
Wadler, but the idea behind it's use in computations is the
same:

data Value = Wrong
 | Num Int

 | PairV Value Value

A custom instance of the Show class is used to print such
results of the process of computing the values of the terms
built by pseudoconstructors , from [8]. We discovered that
Wadler's evaluation mechanism works fine on terms build
by pseudoconstructors. Back to the instance of Show, we
had defined:

instance Show Value where
 show Wrong = " Wrong value"
 show (Num I) = show i
 show (PairV x y)= show (x,y)

Remark: The paired values designed as (PairV x y) are
printed in a common manner, as a t-uple where t=2, using
round brackets, as in the Haskell language itself.
Also, in order to compare values, which is a normal
operation whenusing for example, an if, the above values
was also made an instance of the Eq class:

instance Eq Value where
 Wrong == Wrong = True
 Num a == Num b = a == b
 PairV a1 a2 == PairV b1 b2 = a1==b1 && a2 == b2
 _ == _ = False

This will allow, for example, to check if the value of the
first sub-term of an if expression is providing a value
which is equal with 1 - as it is conventionaly used by C-
like languages.

5.The “Computing with errors” Monad
In the above quoted paper, [15] a monad is used to capture
the essence of computing in the presence of errors , and we
will use it in our example, as model of computation for the
values of the terms. As a remark, nowadays The Haskell
Platform is including the Maybe monad which can also be
used to model the computations with errors. Using the
Maybe Monad here, is also a possibility. The name of the
type is M, and it has a single type parameter.

data M a = Success a | Error String

instance Monad M where
 return a = Success a
 (Success a) >>= k = k a
 (Error s) >>=k = Error s
error s = Error s

The meaning is usual: a finally computed value a,
injected into the monad by return becomes a Success a.
This is the result of a successful computation.
The bind (>>==) between Success a and a second
computation k is defined as k applied to a. So, we can
compute the result by simply extracting a from (Success a)

and apply the (notice: monadic action) k. On the other
side, an error produced by a computation should propagate
and finally produce an error, as result of the whole
computation.
The result of computations is also made show-able, using
also a custom instance of the Show class:

instance (Show a) => Show (M a) where
 show (Success a) = "Success: " ++ show a
 show (Error s) = "Error :" ++ s

6. The dual semantics
Modular monadic interpretation can be implemented as a
type class, which can also be instantiated as a typechecker.
The class we had defined, (called “interpretare”) is
including the following functions: if0, operator, constant,
prj, pair, variable. Here it is, and it is based on the idea that
semantics should not necesarry be a function from Values
to Values than is usual, or a function from Values to M
Values – as the functions are implemented in [15]. We
considered that modular monadic semantics for the terms
build by pseudoconstructors ([8]) should usually be a sort
of function from m values to m values semantics – or
usually a function from m types to m types (next column):

class Interpretare typ where
 if0:: (Monad m) => m typ-> m typ-> m typ-> m typ
 operator :: (Monad m)
 => (Int -> Int -> Int) -> m typ-> m typ-> m typ
 constant :: (Monad m) => Int -> m typ
 prj :: (Num t, Monad m) => t -> m typ-> m typ
 pair :: (Monad m) => m typ-> m typ-> m typ
 variable :: (Monad m) => String -> m typ

Of course, in some special cases, like the simplest terms
packaging other kind of data, the signature will not include
only m type-s. If needed, the interface of the class can be
extended. Here, we have just put a minimal collection. The
word “typ” can be read as “type” which is a keyword in
Haskell.

7.The typechecker
Starting from the class above, the implementation of the
typechecker is strightforward. As a general case, all the
subterms of a term, are itself-evaluated and the results are
used by a fucntion (called f,here) to produce the final
result, in this instance the computed type of the complete
term.

-- Code of the type-checker--

instance Interpretare Type where
 if0 e1 e2 e3 = do { tau1 <- e1 ;

tau2 <- e2 ;
tau3 <- e3 ;
return (f tau1 tau2 tau3)}

 where
 f tau1 tau2 tau3 = if tau2==tau3 && tau1 == MyInt
 then tau2 else TypeError

 f _ _ _ = TypeError
 constant i = return MyInt
 variable s = return MyInt
 operator p e1 e2 = do { MyInt <- e1 ;

MyInt <- e2 ;
return MyInt }

 prj 1 e = do { (Pair tau1 tau2) <- e ; return tau1 }
 prj 2 e = do { (Pair tau1 tau2) <- e ; return tau2 }
 pair e1 e2 = do { tau1 <- e1;

 tau2 <- e2;

 As a result of this definition we are able to evaluate the
types of terms by simply typing the terms in the interactive
mode of hugs or ghci, and specifying That we are
interested in types. In the folowings line, the list monad is
used as support for the do-notations but other monads can
also be used (try the Maybe Monad – for example).

8.The evaluator
A standard evaluator, in this case using a dummy
environment – but it can be replaced by a real one - is also
writable as an instance of the previous class. Notice (by
missing) the absence of interpreter or typechecker nominal
functions.

instance Interpretare Value where
 constant i = return (Num i)
 variable v = return (g v) -- dummy lookup function
 where
 g "x" = (Num 1)
 g "y" = (Num 2)
 if0 e1 e2 e3= do{v0 <- (constant 1);
 v1 <- e1 ;

v2 <- e2 ;
v3 <- e3 ;
return (f v0 v1 v2 v3)}

 where
 f v0 v1 v2 v3 = if v1==v0

then v2 else v3
 prj 1 e = do {(PairV i1 i2) <- e ; return i1 }
 prj 2 e = do { (PairV i1 i2) <- e ; return i2 }
 pair e1 e2 = do { i1 <- e1;

 i2 <- e2;
 return (PairV i1 i2)}

 operator p e1 e2 = do {a <- e1 ;
 b <- e2 ;

 return (lift p a b);
 }
 where lift op (Num x) (Num y) =

Num $ op x y

9.The results
As a result of this dual definitions, the terms based on
pseudoconstructors (like in [8]) can be easily typechecked
and evaluated, simply writing them in interactive mode or
using them in programs. There is a supplementary need:
due to the polymorphism involved. to specify the type of
the terms is a must. Also the monad which is selected to be
used with the do-notations is needed. The system is so
flexible – being based on do-notation, that almost any
monad can be used. In the following examples, the list
monad is used, but it is just a simple possibility, which is

available in the system without suplementary
programming. The reader is encouraged to use the Maybe
monad, too.

10.Examples
Let's evaluate and type check some terms, to see the dual
modular monadic entry -pointless semantic at work for
terms based on pseudoconstructors. For the following
examples, we had asked a Hugs system (but also a ghc or
ghci can be used) to compute the value (packed a s a list)
and the type (also packed as a list) of some terms which are
built based on pseudoconstructors. Also notice how the
terms looks like, and how simple can they be written
comparing with some other solutions.

dan@device:/media/disk/2011-HOAS-7feb$ hugs
interpretare2.hs

Main> (constant 1) :: [Type]
[MyInt]
Main> (constant 1) :: [Value]
[1]

Main> (variable "x") :: [Type]
[MyInt]
Main> (variable "x") :: [Value]
[1]

Main> (operator (+) (constant 1000)
(constant 1)) :: [Type]
[MyInt]
Main> (operator (+) (constant 1000)
(constant 1)) :: [Value]
[1001]
Main> (operator (+) (constant 1000)
(variable "x")) :: [Value]
[1001]
Main> (operator (+) (constant 1000)
(variable "x")) :: [Type]
[MyInt]

Main> (pair (constant 1000) (variable
"x")) :: [Type]
[Pair MyInt MyInt]
Main> (pair (constant 1000) (variable
"x")) :: [Value]
[(1000,1)]
Main> prj 1 (pair (constant 1000)
(variable "x")) :: [Value]
[1000]

Main> (if0 (constant 1) (variable "x")
(variable "y")) ::[Type]
[MyInt]

The reader is invited to use ghc instead of hugs, to try other
terms and even give a complete formal proof that this
implementation can type and evaluate all of the terms built
by this set of pseudoconstructors. Also he or she should
notice: the monad of Successful and Errors computations is
not necessary needed by this kind of solutions, but can be
included as a part of it.

References
[1] Louis Julien Guillemette, Stefan Monier, Type Safe
Code Transformation in Haskell, Univ. of Montreal,
Electronic Notes in Theoretical Computer Science, Elsevier
Science, 174 (2007) 23-39

[2] Hudak Paul, Peterson John, Fasel Joseph – A Gentle
Introduction to Haskell 98, Yale University, Los Alamos
Laboratory, 1999

[3] Hutton, Graham; Meijer, Errik; Monadic parsing in
Haskell; Journal of Functional Programming 1 (1): 1-000,
1993, Cambridge University Press

[4] Hutton, Graham; Meijer, Errik; Monadic Parser
Combinators - “Technical report NOTTCS-TR-96-4 Dept.
Comp Sci Univ,. Nottingham – 1996
http://www.cs.nott.ac.uk/Department/Staff/gmh/monparsin
g.ps

[5] Hutton, Graham; Meijer, Errik; Monadic parsing in
Haskell; Journal of Functional Programming 8(4): 437-
444,Jully 1998
http://www.cs.nott.ac.uk/Department/Staff/gmh/bib.html#p
earl

[6] Ivanovik, Mirjana; Kuncak, Viktor; Modular Language
Speciffications in Haskell; Institute of Mathematics,
University of Novi Sad, Yugoslavia, 2000

[7] Liang S , Hudak P., Jones M. Monade transformers and
modular interpreters, POPL'95. ACM Press,1995

[8] Pseudoconstructors over monadic values
http://www.haskell.org/haskellwiki/Pseudoconstructors_ov
er_monadic_values

[9]Popa Dan; Practica Interpretarii Monadice, Matrix
Rom Publishing House, 2008

[10] Dan Popa, Modular evaluation and interpreters using
monads and type classes in Haskell , Studii si Cercetări

Ştiinţifice, Seria Matematică, Univ. Bacău, (18) 2008, pp
pag. 233 – 248
http://www.haskell.org/wikiupload/7/7d/POPA_D.pdf

[11] Popa, Dan ; Metode si tehnici de realizare a
interpretoarelor adaptabile, Univ. “Al.I.Cuza” Iasi, 2010

[12] The Rodin Project
http://www.haskell.org/haskellwiki/Rodin
http://www.haskell.org/haskellwiki/RodinEn

[13] Zine-el-Abidine Benaisa, Emir Pasalic; DSL
Implementation using staging and monads, Pacific
Software Research Center, Proceedings of DSL'99: The
2nd Conference on Domain-Specific Languages , Austin,
Texas, USA, October 3–6, 1999
http://www.usenix.org/events/dsl99/full_papers/sheard/she
ard.pdf

[14] Peyton Jones, Simon (editor); Haskell 98 Language
and Libraries The Revised Report, Cambridge University
Press (May 5, 2003)
http://haskell.org/definition/haskell98-report.pdf

[15] Wadler, Philip; The essence of functional
programming, The 19th Symposium on Principles of
Programming Languages,ACM, Albuquerque, New
Mexico, 1992

		ARTICLE’S TITLE Adaptable Software – Modular extensible monadic evaluator and typechecker based on pseudoconstructors

		1. Introduction

