
Popa Dan fullpaper template.pdf


ARTICLE’S TITLE Adaptable Software – Modular extensible monadic evaluator 
and typechecker based on pseudoconstructors


Dan Popa
* “Vasile Alecsandri” University of  Bacau, Romania


Abstract. This paper is investigating the use of pseudoconstructors ( a monadic data structure which acts as an itself evaluator) to be  
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1. Introduction 
Modular building of domain small languages (DSLs) had 
attracted  many scientists from decades. We may quote 
from papers like [6], [15] , including papers by  Hutton and 
Meijer [3] [4],[5] to name only some  authors. On the other 
side, the Haskell language ( see Haskell Report[13]), a 
language widely used as a DSL for language building, also 
widely used for monadic computing (i.e. programming 
according to the monadic patterns) is providing the concept 
of modules [2] , [14] .


The first problem, when dealing with papers concerned 
modular  DSL, we had noticed the amazing fact that the 
solutions was not modular (in sense of Haskell modules).
We had also noticed that some advanced parser 
combinators [3],[4],[5] , and some from [9] was not so 
modular as we think they are, because they are producing 
trees which are declared using a non-modular data 
declaration [14] pp 43-45 (algebraic data declarations). The 
problem is closely related  to Wadler's Expression Problem. 
The problem was solved by us in  this –  paper - [10] using 
pseudoconstructors over monadic values as defined by [8].


Usually, the ASTs (abstract syntax trees)  was not modular 
– because Haskell did not allow us to spread a tree data 
declaration in many Haskell modules. The 
pseudoconstructors over monadic values (i.e. monadic 
structures which are simultaneously data structures and self 
evaluated modular interpreters, see [8]) had offered the 
solution and now the trees can be modularly defined even 
by spreading the declarations of pseudoconstructors (sse 
[8]) over the whole set of modules included by a big 
project.


Modular monadic semantics [7], [13] (in ML) when was 
(re)implemented using Haskell  also failed to be modular in 
the sense of Haskell modules (and [14] ), due to the data 
declarations, too. This leads us to a whole language 
implementation  , partially introduced by a Ph.D Thesis 
[10], [11] based on modular monadic itself evaluators , 
where itself-evaluators are carrying a modular monadic 
entry pointless semantic (i.e a semantic without a specific 
interpreter function).  This solution was used by the Rodin 
Project [12].


Because the demo-language Rodin had not included a 
typical typechecker (the modular monadic semantics 
isolates types very well as monadic values indexed by 
types, and also because Rodin was a monotype language 
with some type additions  - ex. Strings to be printed) we 
had concentrated now on the task of building typecheckers 
and evaluators based on pseudoconstructors from [8], but 
in the same time. 
The problem is necessary to be solved: when sticking to the 
idea of entry-pointless interpreters and evaluators or 
typecheckers, apparently the pseudoconstructors  from [8] 
have only one semantic. No two different functions: 
interpreter and typechecker  seems to mean – at first sight 
– no two different interpretations possibles. The problem is 
to put the same modular monadic structure to do bothe (or 
more than one) things. Notice, in this context of discussion, 
the code of a pseudoconstructor implementing an itself-
evaluator: it did not have any interpret or typecheck 
function defined.


Let's examine it. Basically, such a module looks like here:







<structure>  arg1 …  arg n  =
   do  { v1 <- arg1 ;


…
vi <- argi ;
…
vn <- argn ;
return f (v1 … vn) }


Also notice: in an e-mail from Simon Peyton Jones, such 
modular piece of software was considered to be carefully 
studied, being suspected of not being so usefull in some 
cases (for example in code optimization) but this task is 
still an open problem for us.
¶Empty space [Times New Roman 11p, single]
2.The as-instance implementation
The Haskell standard language is implementing the concept 
of type class and instance of a class. Various instances of 
the same class can implement  the same interface  using 
very different semantic functions. We are introducing  the 
idea of implementing both the modular monadic   evaluator 
and the typechecker as instances of the same type class.


Speaking of type checker, our starting point is gathered 
from [1] but a large set of semantics and books concerning 
semantics or lambda calculus may also be used as starting 
point.
On the other side, the evaluator is inspired by those used by 
the  Rodin Project [12]  and the chap. 9 from [11] –  Ph.D 
Thesis.
¶Empty space [Times New Roman 11p, single]
3.Types and values
For typechecking we had used the following type, 
representing various results which can be obtained by  the 
process of typechecking a term built by (as seen in [8]) 
pseudoconstructors. To simplify, only on simple type, 
MyInt was used, but more can be similarly added:


data Type  = MyInt 
   | TypeError                 
    | Pair  Type Type 
     deriving (Show, Eq)  


Note that this is not modular, being an usual data 
declaration so it should be defined from the beginning. 
¶Empty space [Times New Roman 11p, single]
4.Values as support for the evaluation
Inspired by [15] we have used  the folowing type, as 
implementation of the values provided by evaluation of the 
terms. The type below is different than those used by Prof. 
Wadler, but the idea behind it's use in computations is the 
same:


data  Value =  Wrong
   |  Num Int  


           |  PairV Value Value


A custom instance of the Show class is used to print such 
results of the process of computing the values of the terms 
built by pseudoconstructors , from [8].  We discovered that 
Wadler's evaluation mechanism works fine on terms build 
by pseudoconstructors. Back to the instance of Show, we 
had defined:


instance Show Value where
  show Wrong  = " Wrong value"
  show (Num I) = show i
  show (PairV x y)= show (x,y)


Remark: The paired values designed as (PairV x y) are 
printed in a common manner, as a t-uple where t=2, using 
round brackets, as in the Haskell language itself.
Also, in order to compare values, which is a normal 
operation whenusing  for example, an if, the    above values 
was also made an instance of the Eq class:


instance Eq Value where
  Wrong == Wrong                 =  True
  Num a == Num b                 =  a == b
  PairV a1 a2 == PairV b1 b2 =  a1==b1 && a2 == b2
  _ == _          = False  


This will allow, for example, to check if the value of the 
first sub-term of an if expression  is providing a value 
which is equal with 1  - as it is conventionaly used by C-
like languages.


5.The “Computing with errors” Monad
In the above quoted paper, [15] a monad is used to capture 
the essence of computing in the presence of errors , and we 
will use it in  our example, as model of computation for the 
values of the terms. As a remark, nowadays The Haskell 
Platform is including the Maybe monad which can also be 
used to model the computations with errors. Using the 
Maybe Monad here, is also a possibility. The name of the 
type is M, and it has a single type parameter.


data M a = Success a | Error String


instance Monad M where
  return a          = Success a
  (Success a) >>= k = k a
  (Error s)   >>=k  = Error s
error s = Error s


The meaning is usual:  a finally  computed value a, 
injected  into the monad by return becomes a Success a.  
This is the result of a successful computation.
The bind (>>==) between  Success a and a  second 
computation k is defined as k applied to a. So, we can 
compute the result by simply extracting a from (Success a) 







and apply the  (notice: monadic action) k. On the other 
side, an error produced by a computation should propagate 
and finally produce an error, as result of the whole 
computation.
The result of computations is also made show-able, using 
also a custom instance of the Show class:


instance (Show a)  => Show (M a) where
  show (Success a) = "Success: " ++ show a
  show (Error s)     = "Error :" ++ s


6. The dual semantics
Modular monadic interpretation can be implemented as a 
type class, which can also be instantiated as a typechecker. 
The class we had defined, (called “interpretare”) is 
including the following functions: if0, operator, constant,  
prj, pair, variable. Here it is, and it is based on the idea that 
semantics should not necesarry be a function from Values 
to Values than is usual, or a function from Values to M 
Values – as the functions are implemented in [15]. We 
considered  that modular monadic semantics for the terms 
build by pseudoconstructors ([8]) should usually be a sort 
of function from m values to m values semantics – or 
usually a function from m types  to m types  (next column):


class Interpretare  typ where
  if0:: (Monad m) =>  m typ-> m typ-> m typ-> m typ
  operator :: (Monad m) 
   => (Int -> Int -> Int) -> m typ-> m typ-> m typ  
  constant :: (Monad m) => Int -> m typ 
  prj :: (Num t, Monad m) => t -> m typ-> m typ
  pair :: (Monad m) => m typ-> m typ-> m typ
  variable :: (Monad m) => String -> m typ


Of course, in some special cases,  like the simplest terms 
packaging other kind of data, the signature will not include 
only m type-s. If needed, the interface of the class can be 
extended. Here, we have just put a minimal collection. The 
word “typ” can be read as “type” which is a keyword in 
Haskell.
  
7.The typechecker
Starting from the class above, the implementation of the 
typechecker is strightforward. As a general case, all the 
subterms of a term, are itself-evaluated and the results are 
used by a fucntion (called f,here)  to produce the final 
result, in this instance the computed type of the complete 
term.


------------------------------------------------------ Code of the type-checker----------------------------------------------------------------


instance Interpretare Type where
  if0 e1 e2 e3   = do { tau1  <- e1 ;


tau2  <- e2 ;
tau3  <- e3 ;
return ( f tau1 tau2 tau3 )}


                                                where
                          f tau1 tau2 tau3 =   if tau2==tau3 && tau1 == MyInt
                          then tau2 else TypeError


  f _ _ _ = TypeError
  constant i = return MyInt
  variable s = return MyInt
  operator p e1 e2 = do { MyInt <- e1 ;


MyInt <- e2 ;
return MyInt }    


  prj 1 e = do { (Pair tau1 tau2) <- e ; return tau1 } 
  prj 2 e = do { (Pair tau1  tau2) <- e ;    return tau2 }  
  pair e1 e2 = do { tau1 <- e1;


    tau2 <- e2;







  As a result of this definition we are able to evaluate the 
types of terms by simply  typing the terms in the interactive 
mode of hugs or ghci, and specifying That we are 
interested in types. In the folowings line, the list monad is 
used as support for the do-notations but other monads can 
also be used (try the Maybe Monad – for example).


8.The evaluator
A standard evaluator, in this case using a dummy 
environment – but it can be replaced by a real one -  is also 
writable as an instance of the previous class. Notice (by 
missing ) the absence of interpreter or typechecker nominal 
functions.


instance Interpretare Value where
  constant i = return (Num i)  
  variable v = return (g v)             -- dummy lookup function
                    where  
                      g "x" = (Num 1)     
                      g "y" = (Num 2)
  if0 e1 e2 e3= do{v0  <- (constant 1);
                         v1  <- e1 ;


v2  <- e2 ;
v3  <- e3 ;
return ( f v0 v1 v2 v3 )}


                        where
                           f v0 v1 v2 v3 = if v1==v0 


then v2  else v3
  prj 1 e = do {(PairV i1 i2) <- e ; return i1 } 
  prj 2 e = do { (PairV i1 i2) <- e ; return i2 }           
  pair e1 e2 = do { i1 <- e1;


    i2 <- e2;
    return (PairV i1 i2)}


  operator p e1 e2 = do {a <- e1 ;
          b <- e2 ;


           return (lift p  a  b );
         }
   where lift op (Num x)  (Num y) =  


Num $ op x y


9.The results
As a result of this dual definitions, the terms based on 
pseudoconstructors (like in [8]) can be easily typechecked 
and evaluated, simply writing them in interactive mode or 
using them in programs. There is a supplementary need: 
due to the polymorphism involved. to specify the type of 
the terms is a must. Also the monad which is selected to be 
used with  the do-notations is needed. The system is so 
flexible – being based on do-notation, that almost any 
monad can be used. In the following examples, the list 
monad is used, but it is just a simple possibility, which is 


available in the system without suplementary 
programming. The reader is encouraged to use the Maybe 
monad, too.


10.Examples 
Let's evaluate and type check some terms, to see the dual 
modular monadic entry -pointless semantic at work for 
terms based on pseudoconstructors. For the following 
examples, we had asked a Hugs system (but also a ghc or 
ghci can be used) to compute the value (packed a s a list) 
and the type (also packed as a list) of some terms which are 
built based on pseudoconstructors.  Also notice how the 
terms looks like, and how simple can they be written 
comparing with some other  solutions.


dan@device:/media/disk/2011-HOAS-7feb$ hugs 
interpretare2.hs 


Main> (constant 1) :: [Type] 
[MyInt] 
Main> (constant 1) :: [Value] 
[1] 


Main> (variable "x") :: [Type] 
[MyInt] 
Main> (variable "x") :: [Value] 
[1] 


Main> (operator (+) (constant 1000) 
(constant 1)) :: [Type] 
[MyInt] 
Main> (operator (+) (constant 1000) 
(constant 1)) :: [Value] 
[1001] 
Main> (operator (+) (constant 1000) 
(variable "x")) :: [Value] 
[1001] 
Main> (operator (+) (constant 1000) 
(variable "x")) :: [Type] 
[MyInt] 


Main> (pair (constant 1000) (variable 
"x")) :: [Type] 
[Pair MyInt MyInt] 
Main> (pair (constant 1000) (variable 
"x")) :: [Value] 
[(1000,1)] 
Main> prj 1 (pair (constant 1000) 
(variable "x")) :: [Value] 
[1000] 







Main> (if0 (constant 1) (variable "x") 
(variable "y")) ::[Type] 
[MyInt] 


The reader is invited to use ghc instead of hugs, to try other 
terms and even give a complete formal proof that this 
implementation can type and evaluate  all of the terms built 
by this set of pseudoconstructors. Also he or she should 
notice: the monad of Successful and Errors computations is 
not necessary needed by this kind of solutions, but can be 
included as a part of it.
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