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Abstract. This paper introduces a problem solving method for teach-
ing functional programming, based on Polya’s How To Solve It, an in-
troductory investigation of mathematical method. We first present the
language independent version, and then show in particular how it applies
to the development of programs in Haskell. The method is illustrated by
a sequence of examples and a larger case study.
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1 Introduction

Many students take easily to functional programming, whilst others experience
difficulties of one sort or another. The work reported here is the result of attempts
to advise students on how to use problem solving ideas to help them design and
develop programs.

Some students come to a computer science degree with considerable experi-
ence of programming in an imperative language such as Pascal or C. For these
students, a functional approach forces them to look afresh at the process of
programming; it is no longer possible to construct programs ‘from the middle
out’; instead design has to be confronted from the start. Other students come to
a CS programme with no prior programming experience, and so with no ‘bag-
gage’ which might encumber them. Many of these students prefer a functional
approach to the imperative, but lacking the background of the experienced stu-
dents need encouragement and advice about how to build programs.!

In this paper we report on how we try to answer our students’ question
‘Where do I begin? by talking explicitly about problem solving and what it
means in programming. Beyond enabling students to program more effectively
a problem solving approach has a number of other important consequences. The
approach is not only beneficial in a functional programming context, as we are
able to use the approach across our introductory curriculum, as reported in [1],
reinforcing ideas in a disparate set of courses including imperative programming
and systems analysis. It is also striking that the cycle of problem solving is very

! Further reports on instructors’ experience of teaching functional programming were
given at the recent Workshop in the UK [6].



close to the ‘understand, plan, write and review’ scheme which is recommended
to students experiencing difficulties in writing essays, emphasising the fact that
problem solving ability is a transferable skill.

In this paper we first review our general problem solving strategy, mod-
elled on Polya’s epoch-making How To Solve It, [5], which brought these ideas
to prominence in mathematics some fifty years ago. This material is largely
language-independent. We then go on to explore how to take these ideas into
the functional domain by describing ‘How to program it in Haskell’. After looking
at a sequence of examples we examine the case study of palindrome recognition,
and the lessons to be learned from this example. We conclude by reviewing the
future role of problem solving in functional programming and across the com-
puter science curriculum, since the material on problem solving can also be seen
as the first stage in learning software engineering, ‘in the small’ as it were; more
details are given in [1].

I am very grateful to David Barnes and Sally Fincher with whom the cross-
curricular ideas were developed, and to Jan Sellers of the Rutherford Study
Centre at the University of Kent who provided support for workshops in problem
solving, as well as pointing out the overlap with essay writing techniques. The
Alumni Fund of the University of Kent provided funding for Jan to work with
us. Finally I would like to acknowledge all the colleagues at UKC with whom 1
have taught functional programming, and from whom I have learned an immense
amount.

2 How To Program It

Polya’s How To Solve It, [5], contains a wealth of material about how to ap-
proach mathematical problems of various kinds. This ranges from specific hints
which can be used in particular circumstances to general methodological ideas.
The latter are summarised in a two-page table giving a four-stage process (or
more strictly a cycle) for solving problems. In helping students to program, we
have specified a similar summary of method — How To Program It — which is
presented in Figures 1 and 2. The stages of our cycle are: understanding the
problem; designing the program; writing the program and finally looking back
(or ‘reflection’).

The table is largely self-explanatory, so we will not paraphrase it here; instead
we will make some comments about its structure and how it has been used.

How To Program It has been written in a language-independent way (at least
as much as the terminology of modern computing allows). In Section 3 we look at
how it can be specialised for the lazy functional programming language Haskell,
[4, 7]. Plainly it can also be used with other programming languages, and at the
University of Kent we have used it in teaching Modula-3, [1], for instance.

Our approach emphasizes that a novice can make substantial progress in
completing a programming task before beginning to write any program code.
This is very important in demystifying the programming process for those who
find it difficult. As the title of this paper suggests, getting started in the task



UNDERSTANDING THE PROBLEM

First understand the What are the inputs (or arguments)? What are the outputs
problem. (or results)? What is the specification of the problem?
Name the program or Can the specification be satisfied? Is it insufficient? or
function. redundant? or contradictory? What special conditions are

What is its tupe? there on the inputs and outputs?
at is its type?

Does the problem break into parts? It can help to draw
diagrams and to write things down in pseudo-code or plain

English.

DESIGNING THE PROGRAM

In designing the program Have you seen the problem before? In a slightly different
you need to think about form?
the connections between

‘?
the input and the output. Do you know a related problem? Do you know any

programs or functions which could be useful?
If there is no immediate
connection, you might
have to think of auxiliary
problems which would Here is a problem related to yours and solved before. Could
help in the solution. you use it? Could you use its results? Could you use its
methods? Should you introduce some auxiliary parts to the

Look at the specification. Try to find a familiar problem
with the same or similar specification.

You want to give yourself

some sort of plan of how

to write the program. If you cannot solve the proposed problem try to solve a
related one. Can you imagine a more accessible related one?
A more general one? A more specific one? An analogous
problem?

program?

Can you solve part of the problem? Can you get something
useful from the inputs? Can you think of information which
would help you to calculate the outputs? How could you
change the inputs/outputs so that they were closer to each
other?

Did you use all the inputs? Did you use the special
conditions on the inputs? Have you taken into account all
that the specification requires?

Fig.1. How To Program It, Part I



Writing the program
means taking your design
into a particular
programming language.

Think about how you can
build programs in the
language. How do you
deal with different cases?
With doing things in
sequence? With doing
things repeatedly or
recursively?

You also need to know

the programs you have

already written, and the
functions built into the

language or library.

Fzxamine your solution:
how can it be improved?

WRITING YOUR PROGRAM

In writing your program, make sure that you check each
step of the design. Can you see clearly that each step does
what it should?

You can write the program in stages. Think about the
different cases into which the problem divides; in particular
think about the different cases for the inputs. You can also
think about computing parts of the result separately, and
how to put the parts together to get the final results.

You can think of solving the problem by solving it for a
smaller input and using the result to get your result; this is
recursion.

Your design may call on you to solve a more general or
more specific problem. Write the solutions to these; they
may guide how you write the solution itself, or may indeed
be used in that solution.

You should also draw on other programs you have written.
Can they be used? Can they be modified? Can they guide
how to build the solution?

LOOKING BACK
Can you test that the program works, on a variety of
arguments?

Can you think of how you might write the program
differently if you had to start again?

Can you see how you might use the program or its method
to build another program?

Fig. 2. How To Program It, Part IT

can be a block for many students. For example, in the first stage of the process a
student will have to clarify the problem in two complementary ways. First, the
informal statement has to be clarified, and perhaps restated, giving a clear infor-
mal goal. Secondly, this should mean that the student is able to write down the
name of a program or function and more importantly give a type to this artifact
at this stage. While this may seem a small step, it means that misconceptions
can be spotted at an early stage, and avoid a student going off in a mistaken

direction.

The last observation is an example of a general point. Although we have made



reflection (or ‘looking back’) the final stage of the process, it should permeate
the whole process. At the first stage, once a type for a function has been given, it
is sensible to reflect on this choice: giving some typical inputs and corresponding
outputs, does the type specified actually reflect the problem? This means that
a student is forced to check both their understanding of the problem and of the
types of the target language.

At the design stage, students are encouraged to think about the context of the
problem, and the ways in which this can help the solution of the problem itself.
We emphasise that programs can be re-used either by calling them or by mod-
ifying their definitions, as well as the ideas of specialisation and generalisation.
Generalisation is particularly apt in the modern functional context, in which
polymorphism and higher-order functions allow libraries of general functions to
be written with little overhead (in contrast to the C++4 Standard Template
Library, say).

Implementation ideas can be discussed in a more concrete way in the context
of a particular language. The ideas of this section are next discussed in the
context of Haskell by means of a succession of examples in Section 3 and by a
lengthier case study in Section 4. Note that the design stage of the case study
is essentially language independent.

Students are encouraged to reflect on what they have achieved throughout
the problem solving cycle. As well as testing their finished programs, pencil and
paper evaluation of Haskell programs is particularly effective, and we expect
students to use this as a way of discovering how their programs work.

3 Programming it in Haskell

As we saw in the previous section, it is more difficult to give useful language-
independent advice about how to write programs than it is about how to design
them. It is also easier to understand the generalities of How To Program It in
the context of particular examples. We therefore provide students with particular
language-specific advice in tabular form. These tables allow us to

— give examples to illustrate the design and programming stages of the process,
and
— discuss the programming process in a much more specific way.

The full text of Programming it in Haskell is available on the World Wide Web,
[9]. Rather than reproduce it here, in the rest of this section we look at some of
the examples and the points in the process which they illustrate.

Problem: find the maximum of three integers

A first example is to find the maximum of three integers. In our discussion we
link various points in the exposition to the four stages of How To Program It.



Understanding the problem Even in a problem of this simplicity there can
be some discussion of the specification: what is to be done in the case when two
(or three) of the integers are maximal? This is usually resolved by saying that
the common value should be returned, but the important learning point here is
that the discussion takes place. Also one can state the name and type, beginning
the solution:

maxThree :: Int -> Int -> Int -> Int

Designing and writing the program More interesting points can be made
in the design stage. Given a function max to find the maximum of two integers,

max :: Int -> Int -> Int
max a b

| a>=b = a

| otherwise =D

this can be used in two ways. It can form a model for the solution of the problem:

maxThree a b ¢
| a>=b && a>=c = a

|
or 1t can 1itself be used in a solution
maxThree a b ¢ = max (max a b) ¢

It is almost universally the case that novices produce the first solution rather
than the second, so this provides a useful first lesson in the existence of design
choices, guided by the resources available (in this case the function max). Al-
though it is difficult to interpret exactly why this is the case, it can be taken
as an indication that novice students find it more natural to tackle a problem
in a single step, rather than stepping back from the problem and looking at it
more strategically. This lends support to introducing these problem solving ideas
explicitly, rather than hoping that they will be absorbed ‘osmotically’.

We also point out that given maxThree it is straightforward to generalise to
cases of finding the minimum of three numbers, the maximum of four, and so
on.

Looking back Finally, this is a non-trivial example for program testing. A not
uncommon student error here is to make the inequalities strict, thus

maxThreeErr a b ¢

| a>b && a>c = a
| b>c && b>a =b
| otherwise =c

This provides a discussion point in how test data are chosen; the vast majority
of student test data sets do not reveal the error. A systematic approach should
produce the data which indicate the error — a and b jointly maximal — and indeed
the cause of error links back to the initial clarification of the specification.



Problem: add the positive numbers in a list

We use this example to show how to break down the process of designing and
writing a program — stages two and three of our four-step process —into a number
of simpler steps. The function we require is

addPos :: [Int] -> Int

We first consider the design of the equations which describe the function. A
paradigm here if we are to define the function from scratch is primitive recursion
(or structural recursion) over the list argument. In doing this we adopt the
general scheme

addPos [] = ...
addPos (a:x) = ... addPos x ...

in which we have do define the value at [] outright and the value at (a:x) from
the value at x. Completing the first equation gives

addPos [] =0

The (a:x) case requires more thought. Guidance can often come from looking
at examples. Here we take lists

[-4,3,2,-1]
[2,3,2,-1]

which respectively give sums 0 and 6. In the first case the head does not con-
tribute to the sum; in the second it does. This suggests the case analysis

addPos (a:x)
| a>0 = ...
| otherwise

from which point in development the answer can be seen. The point of this
example is less to develop the particular function than to illustrate how the
process works.

The example is also enlightening for the other design possibilities it offers by
way of looking back at the problem. In particularly when students are acquainted
with filter and foldr the explicit definition

addPos = foldr (+) 0 . filter (>0)

is possible. The definition here reflects very clearly its top-down design.

Further examples
Other examples we have used include

Maximum of a list This is similar to addPos, but revisits the questions raised
by the maxThree example. In particular, will the max function be used in the
definition?



Counting how many times a maximum occurs among three numbers
This gives a reasonable example in which local definitions (in a where clause)
naturally structure a definition with a number of parts.

Deciding whether one list is a sublist of another This example naturally
gives rise to an auxiliary function during its development.

Summing integers up to n This can give rise to the generalisation of sum-
ming numbers from m to n.

The discussions thus far have been about algorithms; there is a wealth of material
which addresses data and object design, the former of which we address in [9].

4 Case study: palindromes

The problem is to recognise palindromes, such as
"Madam I’m Adam"

It is chosen as an example since even for a more confident student it requires some
thought before implementation can begin. Once the specification is clarified it
presents a non-trivial design space in which we can illustrate how choices between
alternative designs can take place. Indeed, it is a useful example for small-group
work since it is likely that different groups will produce substantially different
initial design ideas. It is also an example in which a variety of standard functions
can be used.

We address the main ideas in this section; further details are available on the

World Wide Web [8].

Understanding the problem

The problem is stated in a deliberately vague way. A palindrome can be identified
as a string which is the same read forwards or backwards, so long as

(1) we disregard the punctuation (punctuation marks and spaces) in the string;
(2) we disregard the case (upper or lower: that is capital or small) of the letters
in the string.

Requirement (2) is plainly unambiguous, whilst (1) will need to be revisited at
the implementation stage.

Overall design

The palindrome example lends itself to a wide choice of designs. The simpler
problem in which there is no punctuation and all letters in lower case can be
helpful in two ways. It can either form a guide about how to write the full
solution, or be used as a part of that solution. The choice here provides a useful
discussion point.



Design: the simpler problem
Possible designs which can emerge here may be classified in two different ways.

— Is the string handled as a single entity, or split into two parts?
— Is comparison made between strings, or between individual characters?

These choices generate these outline designs:

The string is reversed and compared with itself;

the string is split, one part reversed and the result compared with the other
part;

the first and last characters are compared, and if equal are removed and an
iteration or a recursion is performed;

the string is split, one part reversed and the strings are then compared one
character at a time.

Again, it is important for students to be able both to see the possibilities avail-
able, and to discuss their relative merits (in the context of the implementation
language). Naturally, too, there needs to be a comparison of the different ways
in which the string is represented.

Design: the full problem

Assuming we are to use the solution to the simpler problem in solving the full
problem, we reach our goal by writing a function which removes punctuation and
changes all upper case letters to lower case. Here again we can see an opportunity
to split the task in two, and also to discuss the order in which the two operations
are performed: do we remove punctuation before or after converting letters to
lower case? This allows a discussion of relative efficiency.

Writing the program

At this point we need to revisit the specification and to make plain what is meant
by punctuation. This is not clear from the example given in the specification, and
we can choose either to be proscriptive and disallow everything but letters and
digits, or to be permissive and to say that punctuation consists of a particular
set of characters.

There are more specific implementation decisions to be taken here; these
reinforce the discussions in Section 3. In particular there is substantial scope for
using built-in or library functions.

We give a full implementation of the palindrome recognition problem in Fig-
ure 3.



palin :: String -> Bool

palin st = simplePalin (disregard st)
simplePalin :: String -> Bool
simplePalin st = (rev st == st)

rev :: String -> String

rev [] = [1

rev (a:st) = rev st ++ [a]
disregard :: String -> String
disregard st = change (remove st)

remove :: String -> String
change :: String -> String

remove []1 = []

remove (a:st)
| notPunct a
| otherwise

a ! remove st

remove st
notPunct ch = isAlpha ch || isDigit ch

change [1 = []
change (a:st) = convert a : change st

convert :: Char -> Char

convert ch

| isCap ch = toEnum (fromEnum ch + offset)
| otherwise = ch

where

offset = fromEnum ’a’ - fromEnum ’A°’

isCap :: Char -> Bool

igCap ch = A’ <= ch &% ch <= ’2°

Fig. 3. Recognising palindromes in Haskell



Looking back

Using the approach suggested here, students see that the solution which they
have chosen represents one branch in a tree of choices. Their solution can be
evaluated against other possibilities, including those written by other students.
There is also ample scope for discussion of testing in this problem.

For instance, the solution given in Figure 3 can give rise to numerous discus-
sion points.

— No higher order functions are used in the solution; we would expect to revisit
the example after covering HOF's to reveal that change is map convert and
that remove is filter notPunct.

— In a similar way we would expect to revisit the solution and discuss incor-
porating function-level definitions such as

palin = simplePalin . disregard

This would also apply to disregard itself.

— Some library functions have been used; digits and letters are recognised by
isDigit and isAlpha.

— An alternative definition of disregard is given by

disregard st = remove (change st)

and other solutions are provided by implementing the two operations in a
single function definition, rather than as a composition of two separate pieces
of functionality.

— We have chosen the proscriptive definition of punctuation, considering only
letters and digits to be significant.

5 Conclusion

In this paper we have given an explicit problem solving method for beginning
(functional) programmers, motivated by the desire to equip them with tools to
enable them to write complex programs in a disciplined way. The method also
gives weaker students the confidence to proceed by showing them the ways in
which a seemingly intractable problem can be broken down into simpler parts
which can be solved separately. As well as providing a general method we think
it crucial to illustrate the method by examples and case studies — this latter
approach is not new, see [2] for a very effective account of using case studies in
teaching Pascal.

To conclude, it is worth noting that numerous investigations into mathe-
matical method were stimulated by Polya’s work. Most prominent are Lakatos’
investigations of the roles of proof and counterexample, [3], which we believe
have useful parallels for teachers and students of computer science. We intend
to develop this correspondence further in the future.
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