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Abstract:  The goal of this paper is to investigate the use of a software technology – the 
pseudoconstructors over monadic values (structures capable of simultaneously representing both syntax 
and semantics) – to build modular entry-pointless type checkers using the VHLL Haskell. A template 
used by almost all the modules  of the modular monadic entry-pointless type checker is also revealed.

The actual situation 

The pseudoconstructors over monadic values was used by The Rodin Project [Rodin] in order to build 
modular entry-pointless monadic interpreters and evaluators . The notion comes from some papers 
like [Popa  2008] and it also have been introduced by a dedicated  page of The Haskell Community's 
Website [Pseudoconstructors ] and included – as a way to promote the concept – in the English Version 
of Wikipedia. 
What is known: the pseudoconstructors (a sort of functions used to replace the usual data declarations 
in Haskell and provide modularity) offered a way of solving Wadlers's Expression Problem. The fact 
was checked and confirmed py Prof. Philip Wadler, by e-mail. Some questions concerning their 
properties and applications was raised by Prof. Simon Peyton Jones, related to code generation and 
optimization in a private mail, confirming the existence of such branch in the domain of functional 
interpretation and monadic semantics . I wish to thank you, all, for the time you had spend checking my 
papers, notices and e-mails.
As a result, in an actually defended Ph.D thesis  [Popa – 2010] a supplementary chapter (Chap 9, pp 
140 – 155) was added, also concerning pseudoconstructors over monadic values (The small modules of 
the interpreter are called, self-evaluators, there) . Because further studies appears to be possible and due 
to the fact that Rodin is in fact a small mono-type modular language, the abilities of pseudoconstructors 
to be used as software components for adaptable modular monadic type-checkers have interested us.
Some points should be remind, because, in fact, the advantages of the pseudoconstructors are:
1. They are simultaneously syntactic structures of the terms and modular adaptable monadic 
representations of term's semantics.
2. Due to the missing of (we say “unimportant”) interpret function – the common entry point of any 
interpreter like those presented in [SHJ 1995]  the pseudoconstructors can  be distributed across various 
modules of the project, so providing modularity which is crucial,for example, in natural language 
processing. [Popa  - 2008] [Popa – 2010].
3. Examining the do-notation as it used (see also below, in the case study or in the template area) , the 
monad used by semantic implementation is not fixed, remaining variable,  and the programmers may 
use any monad to develop the system (including one produced by composition of Monad 
Transformers). The idea of monad replacement  - in order to produce various semantics – was 
implemented in some papers by prof. P.Wadler, important being, for us [Wadler ]
4. Pseudoconstructors may be used as implementation for modular trees (which are not declarable in 
Haskell using data declarations) .The fact that data declarations in Haskell are not modular can be 
found reading any Haskell manual, including the Haskell Report. [Report] As a consequence, Haskell 
programmers are forced to declare the whole syntax tree in one place, which is not modular.
So, building a modular monadic typechecker (suitable for modular syntax typechecking) in Haskell is 
in fact a real challenge.



Starting point
 
The type-checker is in fact a recursively  defined semantic function of terms. We had started from one 
semantic function which can be found in [Guillemette & Monier 2007] but other books and papers can 
also serve as a starting point. Because the semantic itself becomes modular, some (coherent) subsets of 
semantic rules can be good starting points too.

The template 

We had succeeded in providing a standard Haskell form for such a type checking semantics, which can 
be used. Here it is (this is not Haskell code):

structure :: (Monad m) => m Type -> …  -> m Type-> m Type
structure e1 e2 … en   = do { t1   <- e1 ;

                             t2   <- e2 ;
                      …

                                              tn   <- en ;
                       return ( proceed t1 t2  … tn ) }

                          where 
                               proceed t1 t2  … tn | p1 && p2 … && pn   = f t1 t2 … tn
                               proceed t1 t2  … tn | p1' && p2' … && pn' = f' t1 t2 … tn

    proceed _ _ _ … _ = TypeError

Some notations should be explained:
structure - is the name of the syntactic structure, it may be simple or complex. Examples: constant,

 variable, operator, if0, lam, app, pair, prj, etc.
m   - is the type variable left free for the use of the required monad.
e1,..,en  - substructures of the syntactic structure 
ti <- ei  - entry-pointless monadic evaluators. Notice the missing of the interp (or interpret) 

function, which usually looks like:
type <- interpret ei context

proceed - the semantic rule provided for typechecking 
p1,...,pn,
p1',...,pn' - predicates expressed in terms of types
f, f' …     - auxiliary functions, sometimesneeded, sometimes not needed

This design was carefully chosen, many attempts was made before. The reader may eventually want to 
reimplement such semantics in order to struggle against some Haskell's limitation. A part of this 
problems are included in the case study below:

The case study

The semantic taken from [Guillemette & Monier 2007] was the subject of our experiment and building 
procedure, following (as much as possible) according the above described template. Because the is a 
recursively defined set of terms, the semantic is also built starting from some simple cases, 
coresponding with the simplest terms. But, first of all, we have to define the set of type values:



The type values

Actually, the values resulted from typechecking are also forming a union type , which is declared using 
an usual data declaration.

data Type  = MyInt 
      | TypeError
      | Arrow Type Type 
      | Pair  Type Type 

                  | BOperator Type Type Type  
        deriving (Show, Eq)       

which means we have had in mind the following situations:
1. Usual integer values.
2. Incorrect expressions. Note that an explanations, as a String, can also be needed and added.
3. A functional type, used in process of computing the type of lambda abstractions.
4. A product of types, used for pairs of expressions.
5. A special, auxiliary type used to simplify the implementation of the typescheme associated with 

binary operators.
The type values declared above will be comparable using the “==” operator, which is a need of the 
type-checking procedure.  And all this values are declared “showable” ; this will help the debugging, 
because we wish to use an interactive Haskell system as Hugs or GHCi to show the results of 
evaluations. Generally speaking, fort the programmer, is a good choice to create showable types 
because any results of the functions  returning such types will be printable, even without a special 
printer procedure. Of course, a commercial implementation may have a different set of requirements 
and may add a custom made printing  - i.e. show – function for such types.

 
Constant's type-checking

The rules required by constants was first of all implemented as:

constant :: (Monad m) => Int -> m Type
constant j = return MyInt

Also, variants of those rules can be considered.  The above one leads to the following evaluation, for 
example, using the list monad as support for the do-notation:

Main>  (constant 1)::[Type]
[MyInt]

Basicaly, the rule is implementing the fact that any constant j will produce the MyInt type, if j belongs 
to Int.

Variable's type-checking
Both for small languages like Rodin [Rodin] having a single simple type, Int or for typed lambada 
calculus systems we may want to use a rule like:



variable :: (Monad m) => t -> m Type
variable _ = return MyInt

This is allowing both kind of definitions  (variable 'x') and (variable “x”) to work fine. Of course, the 
next step will be to use a complete environment and a lookup function. But to simplify the example, 
this simple above definition is enough. So, we can evaluate:

Main>  (variable 'x') ::[Type]
[MyInt]

Remark, a formula like:
  variable :: (Monad m) => String -> m Type
  variable s = return MyInt
can only work for variable having identifiers expressed as elements of the String type. The drawback of 
the previous solution is tha fact that it can evaluate even strange sequences like: (variable (constant 1)). 
That is why t is replaced by String.

Composed structures: the if

Considering a sort of  if accepting an Int instead of a bool (using the classic C language convention: 1 
means True, 0 and others means False). This if, called if0 is also used by  [Guillemette & Monier 
2007]. It's implementation using monadic type is:

if0:: (Monad m) => m Type -> m Type -> m Type -> m Type
if0 e1 e2 e3   = do { tcond <- e1 ;

               tau   <- e2 ;
         tau'  <- e3 ;
         return ( proceed tcond tau tau' ) }

                                     where 
                                           proceed MyInt t1 t2 | t1 == t2 = t1
                                           proceed _ _ _ = TypeError

The “proceed” function was a bit modified, starting from the template. According to the template, it 
may be :
                             proceed t1 t2 t3 | t2 == t3 && t1==MyInt  = t2
                             proceed _ _ _  = TypeError
But both are equivalent, being evaluated to TypeError excepting the case when t2 == t3 and t1==MyInt.
So, if it is written as below, it will match the template: 

if0:: (Monad m) => m Type -> m Type -> m Type -> m Type
if0 e1 e2 e3   = do { tcond <- e1 ;

               tau   <- e2 ;
         tau'  <- e3 ;
         return ( proceed tcond tau tau' ) }

                                     where 
                                             proceed t1 t2 t3 | t2 == t3 && t1==MyInt  = t2
                                             proceed _ _ _  = TypeError

Using any of this definitions we can evaluate:



Main> (if0 (plus) (constant 1) (constant 2)):: [Type]
[TypeError]

Main> (if0 (variable 'x') (constant 1) (constant 2)) :: [Type]
[MyInt]

The binary operators

Various binary operations may require a specific treatment (at least because usual lambda calculus 
functions are single argument functions). The rule is implemented as: 

operator :: (Monad m) => m Type -> m Type -> m Type -> m Type
operator p e1 e2 = do { tau1 <- e1 ;

   tau2 <- e2 ;
                                      tbop <- p; 
                                      return (proceed tau1 tau2 tbop) }
                                           where 
                                              proceed tau1 tau2 (BOperator t1 t2 trez) | tau1 == t1 && tau2 == t2 = trez
                                              proceed _ _ _ =  TypeError

This is also becomes similar with the template, considering the proceed function being:
    proceed tau1 tau2 tbop | tau1 == f1( tbop) &&  tau2 == f2(tbop)  = f3 (tbop)
    proceed _ _ _ =  TypeError
f1,f2,f3 being the projections used to decompose the (Boperator a b c)  structure on it's components. 
Also some operators should added , like: 

plus :: (Monad m) => m Type
plus = return (BOperator MyInt MyInt MyInt)

As part of the research we also wanted to have the operator's type as a function from monadic values to 
monadic values (m Type -> m Type) but the Haskell language did not allow us to use something like:

plus :: (Monad m) => m Type -> m Type -> m Type 
plus (return MyInt) (return MyInt) (return MyInt) = (return MyInt)

This is not allowed because the monad's return is not accepted as part in a pattern matching, because 
return is not a data constructor. As a consequence we have decided  to use a special type for binary 
operators. Now we are able to evaluate something like:

Main> ( operator plus (constant 1) (constant 2)) :: [Type]
[MyInt]

Of course, ore complex terms representing expressions can be type-checked.  Also note that a solution 
using separate operators and no “operator” rule is also possible, leading us to the possibilitry of 
evaluating something like: 

Main> (plus (constant 1) (constant 2)) :: [Type]



[MyInt]
Because we had previously used something like this in [Popa 2008] we did not insist on this case.

Type-checking pairs

Pairs are an important part of the theory of computing, especially lambda calculus. See, for example the 
course [Gordon ] by Prof. Mike Gordon , freely available resource, on the internet.

Pairs can be composed and decomposed. So, projections can also be neeeded to extract  both parts of 
the pairs. The main rule will be accompanied by others.

pair :: (Monad m) => m Type -> m Type -> m Type
pair e1 e2 = do { tau1 <- e1;

     tau2 <- e2;
     return ( Pair tau1 tau2 )}

This simple rule used the fact that every two types can be paired, so we don't need predicates at all. But 
in order to match the template a “proceed” function can be defined:
  proceed tau1 tau2 = Pair tau1 tau2 
or simply:
  proceed = Pair
and the rule can also be written as:

pair :: (Monad m) => m Type -> m Type -> m Type
pair e1 e2 = do { tau1 <- e1;

     tau2 <- e2;
     return ( proceed tau1 tau2 )}

                                where 
                                     proceed tau1 tau2 = Pair tau1 tau2 
                                  
So, we can evaluate and check pairs:
Main> (pair  (constant 1) (constant 2) )::[Type]
[Pair MyInt MyInt]

but also more complex pairs can be checked.
To implement the projections we need two other rules:

prj :: (Num t, Monad m) => t -> m Type -> m Type
prj 1 e = do {  t1 <- e ;

return (proceed t1) }
                          where 
                              proceed (Pair tau1 tau2) = tau1
                              proceed _ = TypeError
prj 2 e = do {  t1 <- e ;

return (proceed t1) }
                          where 
                               proceed (Pair tau1 tau2) = tau2
                               proceed _ = TypeError



Using the above rules we ca check pairs:

Main> (prj 1 (pair (constant 1)(constant 2)))::[Type]
[MyInt]

Main> (prj 1 (constant 1))::[Type]
[TypeError]

Also more complex pairs can be checked. 
Remark: The deviation from the template is just apparent, and is produced by the way of identifying the 
first and the second part of a pair, using numbers. But the template can be strictly followed using:

first :: (Monad m) => m Type -> m Type
first e = do {  t1 <- e ;

return (proceed t1) }
                          where 
                               proceed (Pair tau1 tau2) = tau1
                               proceed _ = TypeError

second :: (Monad m) =>  m Type -> m Type
second e = do { t1 <- e ;

  return (proceed t1) }
                            where 
                               proceed (Pair tau1 tau2) = tau2
                               proceed _ = TypeError

Both this rules can be inserted in the system together with the old rules, and make evaluations like this 
possible:

Main> (first (pair (constant 1) (constant 2))) :: [Type]
[MyInt]
Main> (second (pair (constant 1) (constant 2))) :: [Type]
[MyInt]

Type-checking abstractions and applications

Important parts of a typed lambda calculus system, abstractions and applications can and should be 
checked. The rules are:

lam :: (Monad m) => m Type -> m Type -> m Type
lam x e1 = do { tau1 <- x;
                          tau2 <- e1;

   return (Arrow tau1 tau2) }

In theory, functions can link any type with any type and produce a new type. A special value, Arrow is 
used as type of the abstractions. The applications are using an other rule:



app :: (Monad m) => m Type -> m Type -> m Type
app e1 e2  = do { t1 <- e1   ;

     arg1 <- e2   ;
     return (proceed t1 arg1) }

                               where 
                                   proceed (Arrow tau1 tau2) arg1 | tau1 == arg1 = tau2
                                   proceed _ _ = TypeError   

Using  lam and  app  we can check terms like this:

Main> (lam (variable 'x') (operator plus (variable 'x') (constant 1))) ::[Type]
[Arrow MyInt MyInt]

Main> (app (lam (variable 'x') (operator plus (variable 'x') (constant 1))) (constant 1) )::[Type]
[MyInt]

Main> (app (constant 1) (constant 2))::[Type]
[TypeError]

Conclusion

The use of the pseudoconstructors over monadic values as part of a modular monadic type-checker is 
possible. We have also identified a template matching all rules involved, excepting the simplest cases. 
This kind of type-checker ca be used for the implementation of adaptable modular languages. From our 
point of view it is an important contribution to the set of adaptable tools available for language 
constructions and – open problem - for natural language processing.
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