User:Michiexile/MATH198
Jump to navigation
Jump to search
Course overview
Page is the background material for the Fall 2009 lecture course MATH198[1] on Category Theory and Functional Programming that I gave at Stanford University.
Single unit course. 10 lectures. Each lecture is Wednesday 4.15-5.05 in 380F.
- User:Michiexile/MATH198/Lecture 1
- Category: Definition and examples.
- Concrete categories.
- Set.
- Various categories capturing linear algebra.
- Small categories.
- Partial orders.
- Monoids.
- Finite groups.
- Haskell-Curry isomorphism.
- User:Michiexile/MATH198/Lecture 2
- Special morphisms
- Epimorphism.
- Monomorphism.
- Isomorphism.
- Endomorphism.
- Automorphism.
- Special objects
- Initial.
- Terminal.
- Null.
- Special morphisms
- User:Michiexile/MATH198/Lecture 3
- Functors.
- Category of categories.
- Natural transformations.
- User:Michiexile/MATH198/Lecture 4
- Products, coproducts.
- The power of dualization.
- The algebra of datatypes
- User:Michiexile/MATH198/Lecture 5
- Limits, colimits.
- User:Michiexile/MATH198/Lecture 6
- Equalizers, coequalizers.
- Pushouts/pullbacks
- Adjunctions.
- Free and forgetful.
- User:Michiexile/MATH198/Lecture 7
- Monoid objects.
- Monads.
- Triples.
- Kleisli category.
- Monad factorization.
- User:Michiexile/MATH198/Lecture 8
- Algebras over monads
- Algebras over endofunctors
- Initial algebras and recursion
- Lambek's lemma
- User:Michiexile/MATH198/Lecture 9
- Catamorphisms
- Anamorphisms
- Hylomorphisms
- Metamorphisms
- Paramorphisms
- Apomorphisms
- Properties of adjunctions, examples of adjunctions
- User:Michiexile/MATH198/Lecture 10
- Power objects
- Classifying objects
- Topoi
- Internal logic