https://wiki.haskell.org/api.php?action=feedcontributions&user=Scravy&feedformat=atomHaskellWiki - User contributions [en]2019-12-11T07:12:24ZUser contributionsMediaWiki 1.27.4https://wiki.haskell.org/index.php?title=Applications_and_libraries/Mathematics&diff=56277Applications and libraries/Mathematics2013-06-16T11:47:18Z<p>Scravy: /* Linear algebra */</p>
<hr />
<div>== Applications ==<br />
<br />
=== Physics ===<br />
<br />
;[http://ab-initio.mit.edu/meep/ Meep]<br />
:Meep (or MEEP) is a free finite-difference time-domain (FDTD) simulation software package developed at MIT to model electromagnetic systems.<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides modules that are useful for Quantum Mechanics, among other things.<br />
<br />
== Libraries ==<br />
<br />
=== Linear algebra ===<br />
<br />
;[http://hackage.haskell.org/package/bed-and-breakfast bed-and-breakfast]<br />
:A library that implements Matrix operations in pure Haskell using mutable arrays and the ST Monad. bed-and-breakfast does not need any additional software to be installed and can perform basic matrix operations like multiplication, finding the inverse, and calculating determinants efficiently.<br />
<br />
;[https://github.com/patperry/hs-linear-algebra hs-linear-algebra]<br />
:Patrick Perry's linear algebra library, built on BLAS. [https://github.com/cartazio/hs-cblas hs-cblas] seems to be a more up-to-date fork.<br />
<br />
;[http://www.cs.utah.edu/~hal/HBlas/index.html Wrapper to CLAPACK]<br />
<br />
;[http://haskelldsp.sourceforge.net/ Digital Signal Processing]<br />
:Modules for matrix manipulation, Fourier transform, interpolation, spectral estimation, and frequency estimation.<br />
<br />
;[http://article.gmane.org/gmane.comp.lang.haskell.general/13561 Index-aware linear algebra]<br />
:Frederik Eaton's library for statically checked matrix manipulation in Haskell<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides several modules that are useful for linear algebra in general, among other things.<br />
<br />
;[[vector-space]]<br />
:The [[vector-space]] package defines classes and generic operations for vector spaces and affine spaces. It also defines a type of infinite towers of generalized derivatives (linear transformations).<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmatrix HMatrix]<br />
:By Alberto Ruiz. From the project [http://perception.inf.um.es/hmatrix/ website]:<br />
::''A purely functional interface to linear algebra and other numerical algorithms, internally implemented using LAPACK, BLAS, and GSL.<br />
<br />
::''This package includes standard matrix decompositions (eigensystems, singular values, Cholesky, QR, etc.), linear systems, numeric integration, root finding, etc.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Vec Vec]<br />
:By Scott E. Dillard. Static dimension checking:<br />
::''Vectors are represented by lists with type-encoded lengths. The constructor is :., which acts like a cons both at the value and type levels, with () taking the place of nil. So x:.y:.z:.() is a 3d vector. The library provides a set of common list-like functions (map, fold, etc) for working with vectors. Built up from these functions are a small but useful set of linear algebra operations: matrix multiplication, determinants, solving linear systems, inverting matrices.''<br />
<br />
== See also ==<br />
<br />
* [[Linear algebra]]<br />
* [[Mathematical prelude discussion]]<br />
<br />
<br />
See also: [[Linear algebra|Design discussions]]<br />
<br />
=== [[Physical units]] ===<br />
<br />
;[[Dimensionalized numbers]]<br />
: Working with physical units like second, meter and so on in a type-safe manner.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/SI.hs NumericPrelude: Physical units]<br />
: Numeric values with dynamically checked units.<br />
<br />
;[[CalDims]]<br />
:This is not simply a library providing a new type of <hask>Num</hask> class, but stand-alone calculation tool that supports user defined functions and units (basic and derived), so it can provide dimension-safe calculation (not embedded but via shell). Calculations can be modified/saved via shell. It uses rational numbers to avoid rounding errors where possible.<br />
<br />
;[http://code.google.com/p/dimensional/ Dimensional]<br />
: Library providing data types for performing arithmetic with physical quantities and units. Information about the physical dimensions of the quantities/units is embedded in their types and the validity of operations is verified by the type checker at compile time. The boxing and unboxing of numerical values as quantities is done by multiplication and division of units.<br />
<br />
=== Number representations ===<br />
<br />
==== Decimal numbers ====<br />
<br />
;[http://src.seereason.com/decimal/ Decimal arithmetic library]<br />
:An implementation of real decimal arithmetic, for cases where the binary floating point is not acceptable (for example, money).<br />
<br />
==== Real and rational numbers ====<br />
<br />
There are several levels of [[Exact real arithmetic|handling real numbers]] and according libraries.<br />
<br />
===== Arbitrary precision =====<br />
<br />
* Numbers have fixed precision<br />
* Rounding errors accumulate<br />
* Sharing is easy, i.e. in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> is computed only once<br />
* Fast, because the routines can make use of the fast implementation of <hask>Integer</hask> operations<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides, among other things, a type for arbitrary precision rational numbers with transcendental functions.<br />
<br />
;[http://cvs.haskell.org/darcs/numericprelude/src/Number/FixedPoint.hs FixedPoint.hs]<br />
:part of NumericPrelude project<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Basics AERN-Basics] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real AERN-Real] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Interval AERN-Real-Interval] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Double AERN-Real-Double]<br />
:contains type classes that form a foundation for ''rounded arithmetic'' and ''interval arithmetic'' with explicit control of rounding and the possibility to increase the rounding precision arbitrarily for types that support it. At the moment there are instances for Double floating point numbers where one can control the direction of rounding but cannot increase the rounding precision. In the near future instances for MPFR arbitrary precision numbers will be provided. Intervals can use as endpoints any type that supports directed rounding in the numerical order (such as Double or MPFR) and operations on intervals are rounded either outwards or inwards. Outwards rounding allows to safely approximate exact real arithmetic while a combination of both outwards and inwards rounding allows one to safely approximate exact interval arithmetic. Inverted intervals with Kaucher arithmetic are also supported.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-RnToRm AERN-RnToRm]<br />
:contains arithmetic of ''piecewise polynomial function intervals'' that approximate multi-dimensional (almost everywhere) continuous real functions to arbitrary precision<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmpfr hmpfr]<br />
:hmpfr is a purely functional haskell interface to the [http://www.mpfr.org/ MPFR] library<br />
<br />
;[http://hackage.haskell.org/package/numbers numbers]<br />
:provides an up-to-date, easy-to-use BigFloat implementation that builds with a modern GHC, among other things.<br />
<br />
===== Dynamic precision =====<br />
<br />
* You tell the precision and an expression shall be computed to, and the computer finds out, how precisely to compute the input values<br />
* Rounding errors do not accumulate<br />
* Sharing of temporary results is difficult, that is, in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> ''will'' be computed twice, each time with the required precision.<br />
* Almost as fast as arbitrary precision computation<br />
<br />
;[http://www.cs.man.ac.uk/arch/dlester/exact.html ERA] is an implementation (in Haskell 1.2) by David Lester.<br />
: It is quite fast, possibly the fastest Haskell implementation. At 220 lines it is also the shortest. Probably the shortest implementation of exact real arithmetic in any language.<br />
: The provided number type <hask>CReal</hask> is instance of the Haskell 98 numeric type classes and thus can be used whereever you used Float or Double before and encountered some numerical difficulties.<br />
:Here is a mirror: http://darcs.augustsson.net/Darcs/CReal/<br />
<br />
;[http://www.doc.ic.ac.uk/~ae/exact-computation/#bm:implementations IC-Reals] is an implementation by Abbas Edalat, Marko Krznar&#263; and Peter J. Potts.<br />
:This implementation uses linear fractional transformations.<br />
<br />
;[http://r6.ca/ Few Digits] by Russell O'Connor.<br />
:This is a prototype of the implementation he intendeds to write in [http://coq.inria.fr/ Coq]. Once the Coq implementation is complete, the Haskell code could be extracted producing an implementation that would be proved correct.<br />
<!--<br />
Example:<br />
*Data.Real.CReal> answer 1000 (exp 1 + sqrt 2)<br />
--><br />
<br />
;COMP is an implementation by Yann Kieffer.<br />
:The work is in beta and relies on new primitive operations on Integers which will be implemented in GHC. The library isn't available yet.<br />
<br />
;[http://www2.arnes.si/~abizja4/hera/ Hera] is an implementation by Aleš Bizjak.<br />
:It uses the [http://www.mpfr.org/ MPFR] library to implement dyadic rationals, on top of which are implemented intervals and real numbers. A real number is represented as a function <hask>Int -> Interval</hask> which represents a sequence of intervals converging to the real.<br />
<br />
===== Dynamic precision by lazy evaluation =====<br />
<br />
The real numbers are represented by an infinite datastructure, which allows you to increase precision successively by evaluating the data structure successively. All of the implementations below use some kind of digit stream as number representation.<br />
Sharing of results is simple.<br />
The implementations are either fast on simple expressions, because they use large blocks/bases, or they are fast on complex expressions, because they consume as little as possible input digits in order to emit the required output digits.<br />
<br />
;[http://medialab.freaknet.org/bignum/ BigFloat] is an implementation by Martin Guy.<br />
:It works with streams of decimal digits (strictly in the range from 0 to 9) and a separate sign. The produced digits are always correct. Output is postponed until the code is certain what the next digit is. This sometimes means that [http://medialab.freaknet.org/bignum/dudeney.html no more data is output].<br />
<br />
;In [http://users.info.unicaen.fr/~karczma/arpap/lazypi.ps.gz "The Most Unreliable Technique in the World to compute pi"] Jerzy Karczmarczuk develops some functions for computing pi lazily.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/Positional.hs NumericPrelude: positional numbers]<br />
:Represents a real number as pair <hask>(exponent,[digit])</hask>, where the digits are <hask>Int</hask>s in the open range <hask>(-basis,basis)</hask>. There is no need for an extra sign item in the number data structure. The <hask>basis</hask> can range from <hask>10</hask> to <hask>1000</hask>. (Binary representations can be derived from the hexadecimal representation.) Showing the numbers in traditional format (non-negative digits) fails for fractions ending with a run of zeros. However the internal representation with negative digits can always be shown and is probably more useful for further processing. An interface for the numeric type hierarchy of the NumericPrelude project is provided.<br />
:It features<br />
:* basis conversion<br />
:* basic arithmetic: addition, subtraction, multiplication, division<br />
:* algebraic arithmetic: square root, other roots (no general polynomial roots)<br />
:* transcendental arithmetic: pi, exponential, logarithm, trigonometric and inverse trigonometric functions<br />
<br />
=== Type class hierarchies ===<br />
<br />
There are several approaches to improve the [[Mathematical prelude discussion|numeric type class hierarchy]].<br />
<br />
;Dylan Thurston and Henning Thielemann's [[Numeric Prelude]]<br />
:Experimental revised framework for numeric type classes. Needs hiding of Prelude, overriding hidden functions like fromInteger and multi-parameter type classes. Probably restricted to GHC.<br />
<br />
;Jerzy Karczmarczuk's [http://www.haskell.org/pipermail/haskell-cafe/2001-February/001510.html approach]<br />
<br />
;Serge D. Mechveliani's [ftp://ftp.botik.ru/pub/local/Mechveliani/basAlgPropos/ Basic Algebra proposal]<br />
<br />
;Andrew Frank's [http://www.haskell.org/pipermail/haskell-cafe/2006-April/015326.html approach]<br />
:The proposal: ftp://ftp.geoinfo.tuwien.ac.at/frank/numbersPrelude_v1.pdf<br />
<br />
;Haskell Prime: [http://hackage.haskell.org/trac/haskell-prime/ticket/112 Ongoing efforts for the language revision]<br />
<br />
=== Discrete mathematics ===<br />
<br />
;[http://andrew.bromage.org/darcs/numbertheory/ Number Theory Library]<br />
:Andrew Bromage's Haskell number theory library, providing operations on primes, fibonacci sequences and combinatorics.<br />
<br />
;[http://users.skynet.be/jyp/HGAL/ HGAL]<br />
:An haskell implementation of Brendan McKay's algorithm for graph canonic labeling and automorphism group. (aka Nauty)<br />
<br />
;[http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521849306 Computational Oriented Matroids]<br />
:is a book by [http://wwwopt.mathematik.tu-darmstadt.de/~bokowski/ Jürgen G. Bokowski], where he develops Haskell code for Matroid computations.<br />
<br />
See also [[Libraries and tools/Cryptography]]<br />
<br />
=== Computer Algebra ===<br />
<br />
;[http://haskell.org/docon/ DoCon] - Algebraic Domain Constructor<br />
:A library for Algebra, turns GHCi into a kind of Computer Algebra System<br />
<br />
;[http://www.info.unicaen.fr/~karczma/arpap/ Papers by Jerzy Karczmarczuk]<br />
:Some interesting uses of Haskell in mathematics, including [[functional differentiation]], power series, continued fractions.<br />
<br />
;[http://www.robtougher.com/HCAS/ HCAS] by Rob Tougher.<br />
<br />
=== Statistics ===<br />
;[http://www.sftank.net/?q=node/10 hstats]<br />
: Statistical Computing with Haskell<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmatrix-gsl-stats hmatrix-gsl-stats]<br />
: A binding to the statistics portion of GSL. Works with hmatrix<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hstatistics hstatistics]<br />
: A library for doing statistics. Works with hmatrix<br />
<br />
=== Plotting ===<br />
<br />
;[http://hackage.haskell.org/package/easyplot easyplot]<br />
: Simple and easy wrapper to gnuplot.<br />
<br />
;[[Gnuplot]]<br />
: Simple wrapper to gnuplot<br />
<br />
;[http://alberrto.googlepages.com/gslhaskell GSLHaskell]<br />
: gnuplot wrapper as part of GSL Haskell package<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Chart Chart]<br />
: A library for generating 2D Charts and Plots, based upon the cairo graphics library.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/plot plot]<br />
: A library for generating figures, based upon the cairo graphics libary with<br />
a simple, monadic interface.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/probability probability]<br />
: the module Numeric.Probability.Visualize contains a wrapper to [http://www.r-project.org/ R]<br />
<br />
=== Miscellaneous libraries ===<br />
<br />
;[http://www.robtougher.com/HaskellMath/ HaskellMath]<br />
:The HaskellMath library is a sandbox for experimenting with mathematics algorithms. So far I've implemented a few quantitative finance models (Black Scholes, Binomial Trees, etc) and basic linear algebra functions. Next I might work on either computer algebra or linear programming. All comments welcome!<br />
<br />
;[http://hackage.haskell.org/package/HaskellForMaths HaskellForMaths]<br />
:David Amos' library for combinatorics, group theory, commutative algebra and non-commutative algebra, which is described in an [http://haskellformaths.blogspot.com/ accompanying blog].<br />
<br />
;[http://darcs.haskell.org/htam/ Various math stuff by Henning Thielemann]<br />
:This is some unsorted mathematical stuff including: gnuplot wrapper (now maintained as separate package), portable grey map (PGM) image reader and writer, simplest numerical integration, differentiation, zero finding, interpolation, solution of differential equations, combinatorics, some solutions of math riddles, computation of fractal dimensions of iterated function systems (IFS)<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski wrote a collection of Haskell modules that are useful for Mathematics in general, and Quantum Mechanics in particular.<br />
<br />
:Some of the modules are hosted on [http://darcs.haskell.org/numeric-quest/ haskell.org]. They include modules for:<br />
:* Rational numbers with transcendental functions<br />
:* Roots of polynomials<br />
:* Eigensystems<br />
:* Tensors<br />
:* Dirac quantum mechanics<br />
<br />
:Other modules in Numeric Quest are currently only available via the [http://web.archive.org/web/20010605003250/http://www.numeric-quest.com/haskell/ Internet Archive]. They include, among many other things:<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ State vector evolution]<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ Short study of fuzzy oscillator]<br />
<br />
:See the [[Numeric Quest]] page for more information.<br />
<br />
;[http://www.dinkla.net/fp/cglib.html Geometric Algorithms]<br />
:A small Haskell library, containing algorithms for two-dimensional convex hulls, triangulations of polygons, Voronoi-diagrams and Delaunay-triangulations, the QEDS data structure, kd-trees and range-trees.<br />
<br />
;[http://repetae.net/john/recent/out/HsASA.html Adaptive Simulated Annealing]<br />
:A Haskell interface to Lester Ingber's adaptive simulating annealing code.<br />
<br />
;[http://home.solcon.nl/mklooster/repos/hmm/ Hmm: Haskell Metamath]<br />
:Hmm is a small Haskell library to parse and verify Metamath databases.<br />
<br />
;[[Probabilistic Functional Programming]]<br />
:The PFP library is a collection of modules for Haskell that facilitates probabilistic functional programming, that is, programming with stochastic values. The probabilistic functional programming approach is based on a data type for representing distributions. A distribution represent the outcome of a probabilistic event as a collection of all possible values, tagged with their likelihood. A nice aspect of this system is that simulations can be specified independently from their method of execution. That is, we can either fully simulate or randomize any simulation without altering the code which defines it.<br />
<br />
;[[Sinc function]]<br />
<br />
;[[Gamma and Beta function]]<br />
<br />
;[http://repetae.net/john/recent/out/Boolean.html Boolean]<br />
:A general boolean algebra class and some instances for Haskell.<br />
<br />
;[http://darcs.haskell.org/~lemmih/hode/ HODE]<br />
:HODE is a binding to the Open Dynamics Engine. ODE is an open source, high performance library for simulating rigid body dynamics.<br />
<br />
;[http://sourceforge.net/projects/ranged-sets Ranged Sets]<br />
:A ranged set is a list of non-overlapping ranges. The ranges have upper and lower boundaries, and a boundary divides the base type into values above and below. No value can ever sit on a boundary. So you can have the set <math>(2.0, 3.0] \cup (5.3, 6)</math>.<br />
<br />
;[http://code.google.com/p/hhydra/ hhydra]<br />
:Hhydra is a tool to compute Goodstein successions and hydra puzzles described by Bernard Hodgson in his article 'Herculean or Sisyphean tasks?' published in No 51 March 2004 of the Newsletter of the European Mathematical Society.<br />
<br />
[[Category:Mathematics|*]]<br />
{{LibrariesPage}}</div>Scravyhttps://wiki.haskell.org/index.php?title=Dependent_type&diff=56276Dependent type2013-06-16T11:35:24Z<p>Scravy: /* Dependently typed languages */</p>
<hr />
<div>__TOC__<br />
<br />
== The concept of dependent types ==<br />
<br />
=== General ===<br />
<br />
* [http://en.wikipedia.org/wiki/Dependent_types Wikipedia]<br />
* [http://www-sop.inria.fr/oasis/Caminha00/abstract.html Dependent Types in Programming] abstract in APPSEM'2000<br />
* [http://www.brics.dk/RS/01/10/BRICS-RS-01-10.ps.gz Do we need dependent types?] by Daniel Fridlender and Mia Indrika, 2001.<br />
<br />
<br />
=== Type theory ===<br />
<br />
Simon Thompson: [http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/ Type Theory and Functional Programming]. Section 6.3 deals with dependent types, but because of the strong emphasis on [http://en.wikipedia.org/wiki/Curry_Howard_isomorphism Curry-Howard isomorphism] and the connections between logic and programming,<br />
the book seemed cathartic for me even from its beginning.<br />
<br />
Another interesting approach to Curry-Howard isomorphism and the concept of dependent type: [http://www.cs.chalmers.se/~aarne/course-langtech/lectures/lang09.html Lecture 9. Semantics and pragmatics of text and dialogue] dicsusses these concepts in the context of linguistics. Written by [http://www.cs.chalmers.se/~aarne/ Arne Ranta], see also [[Libraries and tools/Linguistics#Other functional or Haskell-related approaches to linguistics|his online course and other linguistical materials on the Linguistics wikipage]].<br />
<br />
[http://lists.seas.upenn.edu/mailman/listinfo/types-list Types Forum]<br />
<br />
=== Illative combinatory logic ===<br />
<br />
To see how Illative [[Combinatory logic]] deals with dependent types, see combinator '''G''' described in [http://citeseer.ist.psu.edu/246934.html Systems of Illative Combinatory Logic complete for first-order propositional and predicate calculus] by Henk Barendregt, Martin Bunder, Wil Dekkers.<br />
It seems to me that the dependent type construct<br />
<math>\forall x : S \Rightarrow T</math><br />
of Epigram corresponds to<br />
<math>\mathbf G\;S\;(\lambda x . T)</math><br />
in Illative Combinatory Logic. I think e.g. the followings should correspond to each other:<br />
* <math>\mathrm{realNullvector} :\;\;\;\forall n: \mathrm{Nat} \Rightarrow \mathrm{RealVector}\;n</math><br />
* <math>\mathbf G\;\,\mathrm{Nat}\;\,\mathrm{RealVector}\;\,\mathrm{realNullvector}</math><br />
<br />
<br />
== Dependently typed languages ==<br />
<br />
=== Epigram ===<br />
<br />
[http://www.e-pig.org/ Epigram] is a full dependently typed programming language, see especially<br />
* [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9718&rep=rep1&type=pdf Epigram Tutorial] by Conor McBride<br />
* and [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.8190&rep=rep1&type=pdf Why dependent types matter] by Thorsten Altenkirch, Conor McBride and James McKinna).<br />
<br />
Dependent types (of this language) also provide a not-forgetful concept of '''views''' (already mentioned in the Haskell [[Future of Haskell#Extensions of Haskell]];<br />
the connection between these concepts is described in p. 32 of Epigram Tutorial (section ''4.6 Patterns Forget; Matching Is Remembering'').<br />
<br />
See Epigram also as [[Libraries and tools/Theorem provers|theorem prover]].<br />
<br />
=== Agda ===<br />
<br />
[http://www.cs.chalmers.se/~ulfn/Agda/ Agda] is a system for incrementally developing proofs and programs. Agda is also a functional language with dependent types. This language is similar to Epigram but has a more Haskell-like syntax.<br />
<br />
People who are interested also in theorem proving may see the [[Libraries and tools/Theorem provers|theorem provers]] page.<br />
<br />
=== Idris ===<br />
<br />
[http://idris-lang.org/ Idris] is a general purpose pure functional programming language with dependent types, eager evaluation, and optional lazy evaluation via laziness annotations. It has a very Haskell-like syntax and is available on [http://hackage.haskell.org/package/idris Hackage].<br />
<br />
Idris is actively developed by [http://edwinb.wordpress.com/ Edwin Brady] at the [http://www.cs.st-andrews.ac.uk/ University of St. Andrews].<br />
<br />
=== Cayenne ===<br />
<br />
[http://www.augustsson.net/Darcs/Cayenne/html/ Cayenne] is influenced also by [http://en.wikipedia.org/wiki/Constructive_type_theory constructive type theory].<br />
<br />
Dependent types make it possible not to have a separate module language and a core language. This idea may concern Haskell too, see [[First-class module]] page.<br />
<br />
Dependent types make it useful also as a [[Applications and libraries/Theorem provers|theorem prover]].<br />
<br />
== Dependent types in Haskell programming ==<br />
<br />
=== Lightweight Dependent Typing ===<br />
[http://pobox.com/~oleg/ftp/Computation/lightweight-dependent-typing.html This web page] describes the lightweight approach<br />
and its applications, e.g., statically safe head/tail functions and<br />
the elimination<br />
of array bound check (even in such complex algorithms as Knuth-Morris-Pratt<br />
string search). The page also briefly describes `singleton types' (Hayashi and<br />
Xi).<br />
<br />
=== Library ===<br />
<br />
[http://www.cs.st-and.ac.uk/~eb/ivor.php Ivor] is type theory based theorem proving library -- written by [http://www.dcs.st-and.ac.uk/~eb/index.php Edwin Brady] (see also the author's homepage, there are a lot of materials concerning dependent type theory there).<br />
<br />
=== Proposals ===<br />
John Hughes: [http://www.coverproject.org/TalksUntilSpring2004/DependentTypesInHaskell.pdf Dependent Types in Haskell (some ideas)].<br />
<br />
=== Simulating them ===<br />
* [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.2636 Faking it: Simulating Dependent Types in Haskell], by Conor McBride<br />
* <s>[http://haskell.org/hawiki/SimulatingDependentTypes SimulatingDependentTypes] of HaWiki</s> (404 Error)<br />
* The [[Type#See also|''See also'' section of Type]] page contains links to many related idioms. Especially [[type arithmetic]] seems to me also a way yielding some tastes from dependent type theory.<br />
* On the usefulness of such idioms in practice, see HaskellDB's pages<br />
** [http://haskelldb.sourceforge.net/ updated] page (see ''Papers'' subsection on [http://haskelldb.sourceforge.net/#documentation Documentation])<br />
** which presupposes reading also paper on the [http://www.haskell.org/haskellDB/ original] page (see [http://www.haskell.org/haskellDB/doc.html Documentation subpage], PostScript version)<br />
<br />
[[Category:Theoretical foundations]]<br />
<br />
[[Category:Type-level programming]]</div>Scravyhttps://wiki.haskell.org/index.php?title=Applications_and_libraries/Mathematics&diff=55635Applications and libraries/Mathematics2013-04-02T14:39:14Z<p>Scravy: /* Plotting */</p>
<hr />
<div>== Applications ==<br />
<br />
=== Physics ===<br />
<br />
;[http://ab-initio.mit.edu/meep/ Meep]<br />
:Meep (or MEEP) is a free finite-difference time-domain (FDTD) simulation software package developed at MIT to model electromagnetic systems.<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides modules that are useful for Quantum Mechanics, among other things.<br />
<br />
== Libraries ==<br />
<br />
=== Linear algebra ===<br />
<br />
;[https://github.com/patperry/hs-linear-algebra hs-linear-algebra]<br />
:Patrick Perry's linear algebra library, built on BLAS.<br />
<br />
;[http://www.cs.utah.edu/~hal/HBlas/index.html Wrapper to CLAPACK]<br />
<br />
;[http://haskelldsp.sourceforge.net/ Digital Signal Processing]<br />
:Modules for matrix manipulation, Fourier transform, interpolation, spectral estimation, and frequency estimation.<br />
<br />
;[http://article.gmane.org/gmane.comp.lang.haskell.general/13561 Index-aware linear algebra]<br />
:Frederik Eaton's library for statically checked matrix manipulation in Haskell<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides several modules that are useful for linear algebra in general, among other things.<br />
<br />
;[[vector-space]]<br />
:The [[vector-space]] package defines classes and generic operations for vector spaces and affine spaces. It also defines a type of infinite towers of generalized derivatives (linear transformations).<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmatrix HMatrix]<br />
:By Alberto Ruiz. From the project [http://perception.inf.um.es/hmatrix/ website]:<br />
::''A purely functional interface to linear algebra and other numerical algorithms, internally implemented using LAPACK, BLAS, and GSL.<br />
<br />
::''This package includes standard matrix decompositions (eigensystems, singular values, Cholesky, QR, etc.), linear systems, numeric integration, root finding, etc.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Vec Vec]<br />
:By Scott E. Dillard. Static dimension checking:<br />
::''Vectors are represented by lists with type-encoded lengths. The constructor is :., which acts like a cons both at the value and type levels, with () taking the place of nil. So x:.y:.z:.() is a 3d vector. The library provides a set of common list-like functions (map, fold, etc) for working with vectors. Built up from these functions are a small but useful set of linear algebra operations: matrix multiplication, determinants, solving linear systems, inverting matrices.''<br />
<br />
== See also ==<br />
<br />
* [[Linear algebra]]<br />
* [[Mathematical prelude discussion]]<br />
<br />
<br />
See also: [[Linear algebra|Design discussions]]<br />
<br />
=== [[Physical units]] ===<br />
<br />
;[[Dimensionalized numbers]]<br />
: Working with physical units like second, meter and so on in a type-safe manner.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/SI.hs NumericPrelude: Physical units]<br />
: Numeric values with dynamically checked units.<br />
<br />
;[[CalDims]]<br />
:This is not simply a library providing a new type of <hask>Num</hask> class, but stand-alone calculation tool that supports user defined functions and units (basic and derived), so it can provide dimension-safe calculation (not embedded but via shell). Calculations can be modified/saved via shell. It uses rational numbers to avoid rounding errors where possible.<br />
<br />
;[http://code.google.com/p/dimensional/ Dimensional]<br />
: Library providing data types for performing arithmetic with physical quantities and units. Information about the physical dimensions of the quantities/units is embedded in their types and the validity of operations is verified by the type checker at compile time. The boxing and unboxing of numerical values as quantities is done by multiplication and division of units.<br />
<br />
=== Number representations ===<br />
<br />
==== Decimal numbers ====<br />
<br />
;[http://src.seereason.com/decimal/ Decimal arithmetic library]<br />
:An implementation of real decimal arithmetic, for cases where the binary floating point is not acceptable (for example, money).<br />
<br />
==== Real and rational numbers ====<br />
<br />
There are several levels of [[Exact real arithmetic|handling real numbers]] and according libraries.<br />
<br />
===== Arbitrary precision =====<br />
<br />
* Numbers have fixed precision<br />
* Rounding errors accumulate<br />
* Sharing is easy, i.e. in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> is computed only once<br />
* Fast, because the routines can make use of the fast implementation of <hask>Integer</hask> operations<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides, among other things, a type for arbitrary precision rational numbers with transcendental functions.<br />
<br />
;[http://cvs.haskell.org/darcs/numericprelude/src/Number/FixedPoint.hs FixedPoint.hs]<br />
:part of NumericPrelude project<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Basics AERN-Basics] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real AERN-Real] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Interval AERN-Real-Interval] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Double AERN-Real-Double]<br />
:contains type classes that form a foundation for ''rounded arithmetic'' and ''interval arithmetic'' with explicit control of rounding and the possibility to increase the rounding precision arbitrarily for types that support it. At the moment there are instances for Double floating point numbers where one can control the direction of rounding but cannot increase the rounding precision. In the near future instances for MPFR arbitrary precision numbers will be provided. Intervals can use as endpoints any type that supports directed rounding in the numerical order (such as Double or MPFR) and operations on intervals are rounded either outwards or inwards. Outwards rounding allows to safely approximate exact real arithmetic while a combination of both outwards and inwards rounding allows one to safely approximate exact interval arithmetic. Inverted intervals with Kaucher arithmetic are also supported.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-RnToRm AERN-RnToRm]<br />
:contains arithmetic of ''piecewise polynomial function intervals'' that approximate multi-dimensional (almost everywhere) continuous real functions to arbitrary precision<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmpfr hmpfr]<br />
:hmpfr is a purely functional haskell interface to the [http://www.mpfr.org/ MPFR] library<br />
<br />
;[http://hackage.haskell.org/package/numbers numbers]<br />
:provides an up-to-date, easy-to-use BigFloat implementation that builds with a modern GHC, among other things.<br />
<br />
===== Dynamic precision =====<br />
<br />
* You tell the precision and an expression shall be computed to, and the computer finds out, how precisely to compute the input values<br />
* Rounding errors do not accumulate<br />
* Sharing of temporary results is difficult, that is, in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> ''will'' be computed twice, each time with the required precision.<br />
* Almost as fast as arbitrary precision computation<br />
<br />
;[http://www.cs.man.ac.uk/arch/dlester/exact.html ERA] is an implementation (in Haskell 1.2) by David Lester.<br />
: It is quite fast, possibly the fastest Haskell implementation. At 220 lines it is also the shortest. Probably the shortest implementation of exact real arithmetic in any language.<br />
: The provided number type <hask>CReal</hask> is instance of the Haskell 98 numeric type classes and thus can be used whereever you used Float or Double before and encountered some numerical difficulties.<br />
:Here is a mirror: http://darcs.augustsson.net/Darcs/CReal/<br />
<br />
;[http://www.doc.ic.ac.uk/~ae/exact-computation/#bm:implementations IC-Reals] is an implementation by Abbas Edalat, Marko Krznar&#263; and Peter J. Potts.<br />
:This implementation uses linear fractional transformations.<br />
<br />
;[http://r6.ca/ Few Digits] by Russell O'Connor.<br />
:This is a prototype of the implementation he intendeds to write in [http://coq.inria.fr/ Coq]. Once the Coq implementation is complete, the Haskell code could be extracted producing an implementation that would be proved correct.<br />
<!--<br />
Example:<br />
*Data.Real.CReal> answer 1000 (exp 1 + sqrt 2)<br />
--><br />
<br />
;COMP is an implementation by Yann Kieffer.<br />
:The work is in beta and relies on new primitive operations on Integers which will be implemented in GHC. The library isn't available yet.<br />
<br />
;[http://www2.arnes.si/~abizja4/hera/ Hera] is an implementation by Aleš Bizjak.<br />
:It uses the [http://www.mpfr.org/ MPFR] library to implement dyadic rationals, on top of which are implemented intervals and real numbers. A real number is represented as a function <hask>Int -> Interval</hask> which represents a sequence of intervals converging to the real.<br />
<br />
===== Dynamic precision by lazy evaluation =====<br />
<br />
The real numbers are represented by an infinite datastructure, which allows you to increase precision successively by evaluating the data structure successively. All of the implementations below use some kind of digit stream as number representation.<br />
Sharing of results is simple.<br />
The implementations are either fast on simple expressions, because they use large blocks/bases, or they are fast on complex expressions, because they consume as little as possible input digits in order to emit the required output digits.<br />
<br />
;[http://medialab.freaknet.org/bignum/ BigFloat] is an implementation by Martin Guy.<br />
:It works with streams of decimal digits (strictly in the range from 0 to 9) and a separate sign. The produced digits are always correct. Output is postponed until the code is certain what the next digit is. This sometimes means that [http://medialab.freaknet.org/bignum/dudeney.html no more data is output].<br />
<br />
;In [http://users.info.unicaen.fr/~karczma/arpap/lazypi.ps.gz "The Most Unreliable Technique in the World to compute pi"] Jerzy Karczmarczuk develops some functions for computing pi lazily.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/Positional.hs NumericPrelude: positional numbers]<br />
:Represents a real number as pair <hask>(exponent,[digit])</hask>, where the digits are <hask>Int</hask>s in the open range <hask>(-basis,basis)</hask>. There is no need for an extra sign item in the number data structure. The <hask>basis</hask> can range from <hask>10</hask> to <hask>1000</hask>. (Binary representations can be derived from the hexadecimal representation.) Showing the numbers in traditional format (non-negative digits) fails for fractions ending with a run of zeros. However the internal representation with negative digits can always be shown and is probably more useful for further processing. An interface for the numeric type hierarchy of the NumericPrelude project is provided.<br />
:It features<br />
:* basis conversion<br />
:* basic arithmetic: addition, subtraction, multiplication, division<br />
:* algebraic arithmetic: square root, other roots (no general polynomial roots)<br />
:* transcendental arithmetic: pi, exponential, logarithm, trigonometric and inverse trigonometric functions<br />
<br />
=== Type class hierarchies ===<br />
<br />
There are several approaches to improve the [[Mathematical prelude discussion|numeric type class hierarchy]].<br />
<br />
;Dylan Thurston and Henning Thielemann's [[Numeric Prelude]]<br />
:Experimental revised framework for numeric type classes. Needs hiding of Prelude, overriding hidden functions like fromInteger and multi-parameter type classes. Probably restricted to GHC.<br />
<br />
;Jerzy Karczmarczuk's [http://www.haskell.org/pipermail/haskell-cafe/2001-February/001510.html approach]<br />
<br />
;Serge D. Mechveliani's [ftp://ftp.botik.ru/pub/local/Mechveliani/basAlgPropos/ Basic Algebra proposal]<br />
<br />
;Andrew Frank's [http://www.haskell.org/pipermail/haskell-cafe/2006-April/015326.html approach]<br />
:The proposal: ftp://ftp.geoinfo.tuwien.ac.at/frank/numbersPrelude_v1.pdf<br />
<br />
;Haskell Prime: [http://hackage.haskell.org/trac/haskell-prime/ticket/112 Ongoing efforts for the language revision]<br />
<br />
=== Discrete mathematics ===<br />
<br />
;[http://andrew.bromage.org/darcs/numbertheory/ Number Theory Library]<br />
:Andrew Bromage's Haskell number theory library, providing operations on primes, fibonacci sequences and combinatorics.<br />
<br />
;[http://users.skynet.be/jyp/HGAL/ HGAL]<br />
:An haskell implementation of Brendan McKay's algorithm for graph canonic labeling and automorphism group. (aka Nauty)<br />
<br />
;[http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521849306 Computational Oriented Matroids]<br />
:is a book by [http://wwwopt.mathematik.tu-darmstadt.de/~bokowski/ Jürgen G. Bokowski], where he develops Haskell code for Matroid computations.<br />
<br />
See also [[Libraries and tools/Cryptography]]<br />
<br />
=== Computer Algebra ===<br />
<br />
;[http://haskell.org/docon/ DoCon] - Algebraic Domain Constructor<br />
:A library for Algebra, turns GHCi into a kind of Computer Algebra System<br />
<br />
;[http://www.info.unicaen.fr/~karczma/arpap/ Papers by Jerzy Karczmarczuk]<br />
:Some interesting uses of Haskell in mathematics, including [[functional differentiation]], power series, continued fractions.<br />
<br />
;[http://www.robtougher.com/HCAS/ HCAS] by Rob Tougher.<br />
<br />
=== Statistics ===<br />
;[http://www.sftank.net/?q=node/10 hstats]<br />
: Statistical Computing with Haskell<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmatrix-gsl-stats hmatrix-gsl-stats]<br />
: A binding to the statistics portion of GSL. Works with hmatrix<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hstatistics hstatistics]<br />
: A library for doing statistics. Works with hmatrix<br />
<br />
=== Plotting ===<br />
<br />
;[http://hackage.haskell.org/package/easyplot easyplot]<br />
: Simple and easy wrapper to gnuplot.<br />
<br />
;[[Gnuplot]]<br />
: Simple wrapper to gnuplot<br />
<br />
;[http://alberrto.googlepages.com/gslhaskell GSLHaskell]<br />
: gnuplot wrapper as part of GSL Haskell package<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Chart Chart]<br />
: A library for generating 2D Charts and Plots, based upon the cairo graphics library.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/plot plot]<br />
: A library for generating figures, based upon the cairo graphics libary with<br />
a simple, monadic interface.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/probability probability]<br />
: the module Numeric.Probability.Visualize contains a wrapper to [http://www.r-project.org/ R]<br />
<br />
=== Miscellaneous libraries ===<br />
<br />
;[http://www.robtougher.com/HaskellMath/ HaskellMath]<br />
:The HaskellMath library is a sandbox for experimenting with mathematics algorithms. So far I've implemented a few quantitative finance models (Black Scholes, Binomial Trees, etc) and basic linear algebra functions. Next I might work on either computer algebra or linear programming. All comments welcome!<br />
<br />
;[http://hackage.haskell.org/package/HaskellForMaths HaskellForMaths]<br />
:David Amos' library for combinatorics, group theory, commutative algebra and non-commutative algebra, which is described in an [http://haskellformaths.blogspot.com/ accompanying blog].<br />
<br />
;[http://darcs.haskell.org/htam/ Various math stuff by Henning Thielemann]<br />
:This is some unsorted mathematical stuff including: gnuplot wrapper (now maintained as separate package), portable grey map (PGM) image reader and writer, simplest numerical integration, differentiation, zero finding, interpolation, solution of differential equations, combinatorics, some solutions of math riddles, computation of fractal dimensions of iterated function systems (IFS)<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski wrote a collection of Haskell modules that are useful for Mathematics in general, and Quantum Mechanics in particular.<br />
<br />
:Some of the modules are hosted on [http://darcs.haskell.org/numeric-quest/ haskell.org]. They include modules for:<br />
:* Rational numbers with transcendental functions<br />
:* Roots of polynomials<br />
:* Eigensystems<br />
:* Tensors<br />
:* Dirac quantum mechanics<br />
<br />
:Other modules in Numeric Quest are currently only available via the [http://web.archive.org/web/20010605003250/http://www.numeric-quest.com/haskell/ Internet Archive]. They include, among many other things:<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ State vector evolution]<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ Short study of fuzzy oscillator]<br />
<br />
:See the [[Numeric Quest]] page for more information.<br />
<br />
;[http://www.dinkla.net/fp/cglib.html Geometric Algorithms]<br />
:A small Haskell library, containing algorithms for two-dimensional convex hulls, triangulations of polygons, Voronoi-diagrams and Delaunay-triangulations, the QEDS data structure, kd-trees and range-trees.<br />
<br />
;[http://repetae.net/john/recent/out/HsASA.html Adaptive Simulated Annealing]<br />
:A Haskell interface to Lester Ingber's adaptive simulating annealing code.<br />
<br />
;[http://home.solcon.nl/mklooster/repos/hmm/ Hmm: Haskell Metamath]<br />
:Hmm is a small Haskell library to parse and verify Metamath databases.<br />
<br />
;[[Probabilistic Functional Programming]]<br />
:The PFP library is a collection of modules for Haskell that facilitates probabilistic functional programming, that is, programming with stochastic values. The probabilistic functional programming approach is based on a data type for representing distributions. A distribution represent the outcome of a probabilistic event as a collection of all possible values, tagged with their likelihood. A nice aspect of this system is that simulations can be specified independently from their method of execution. That is, we can either fully simulate or randomize any simulation without altering the code which defines it.<br />
<br />
;[[Sinc function]]<br />
<br />
;[[Gamma and Beta function]]<br />
<br />
;[http://repetae.net/john/recent/out/Boolean.html Boolean]<br />
:A general boolean algebra class and some instances for Haskell.<br />
<br />
;[http://darcs.haskell.org/~lemmih/hode/ HODE]<br />
:HODE is a binding to the Open Dynamics Engine. ODE is an open source, high performance library for simulating rigid body dynamics.<br />
<br />
;[http://sourceforge.net/projects/ranged-sets Ranged Sets]<br />
:A ranged set is a list of non-overlapping ranges. The ranges have upper and lower boundaries, and a boundary divides the base type into values above and below. No value can ever sit on a boundary. So you can have the set <math>(2.0, 3.0] \cup (5.3, 6)</math>.<br />
<br />
;[http://code.google.com/p/hhydra/ hhydra]<br />
:Hhydra is a tool to compute Goodstein successions and hydra puzzles described by Bernard Hodgson in his article 'Herculean or Sisyphean tasks?' published in No 51 March 2004 of the Newsletter of the European Mathematical Society.<br />
<br />
[[Category:Mathematics|*]]<br />
{{LibrariesPage}}</div>Scravyhttps://wiki.haskell.org/index.php?title=Applications_and_libraries/Mathematics&diff=45547Applications and libraries/Mathematics2012-05-02T00:43:15Z<p>Scravy: /* Plotting */</p>
<hr />
<div>== Applications ==<br />
<br />
=== Physics ===<br />
<br />
;[http://ab-initio.mit.edu/meep/ Meep]<br />
:Meep (or MEEP) is a free finite-difference time-domain (FDTD) simulation software package developed at MIT to model electromagnetic systems.<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides modules that are useful for Quantum Mechanics, among other things.<br />
<br />
== Libraries ==<br />
<br />
=== Linear algebra ===<br />
<br />
;[https://github.com/patperry/hs-linear-algebra hs-linear-algebra]<br />
:Patrick Perry's linear algebra library, built on BLAS.<br />
<br />
;[http://www.cs.utah.edu/~hal/HBlas/index.html Wrapper to CLAPACK]<br />
<br />
;[http://haskelldsp.sourceforge.net/ Digital Signal Processing]<br />
:Modules for matrix manipulation, Fourier transform, interpolation, spectral estimation, and frequency estimation.<br />
<br />
;[http://article.gmane.org/gmane.comp.lang.haskell.general/13561 Index-aware linear algebra]<br />
:Frederik Eaton's library for statically checked matrix manipulation in Haskell<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides several modules that are useful for linear algebra in general, among other things.<br />
<br />
;[[vector-space]]<br />
:The [[vector-space]] package defines classes and generic operations for vector spaces and affine spaces. It also defines a type of infinite towers of generalized derivatives (linear transformations).<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmatrix HMatrix]<br />
:By Alberto Ruiz. From the project [http://perception.inf.um.es/hmatrix/ website]:<br />
::''A purely functional interface to linear algebra and other numerical algorithms, internally implemented using LAPACK, BLAS, and GSL.<br />
<br />
::''This package includes standard matrix decompositions (eigensystems, singular values, Cholesky, QR, etc.), linear systems, numeric integration, root finding, etc.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Vec Vec]<br />
:By Scott E. Dillard. Static dimension checking:<br />
::''Vectors are represented by lists with type-encoded lengths. The constructor is :., which acts like a cons both at the value and type levels, with () taking the place of nil. So x:.y:.z:.() is a 3d vector. The library provides a set of common list-like functions (map, fold, etc) for working with vectors. Built up from these functions are a small but useful set of linear algebra operations: matrix multiplication, determinants, solving linear systems, inverting matrices.''<br />
<br />
== See also ==<br />
<br />
* [[Linear algebra]]<br />
* [[Mathematical prelude discussion]]<br />
<br />
<br />
See also: [[Linear algebra|Design discussions]]<br />
<br />
=== [[Physical units]] ===<br />
<br />
;[[Dimensionalized numbers]]<br />
: Working with physical units like second, meter and so on in a type-safe manner.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/SI.hs NumericPrelude: Physical units]<br />
: Numeric values with dynamically checked units.<br />
<br />
;[[CalDims]]<br />
:This is not simply a library providing a new type of <hask>Num</hask> class, but stand-alone calculation tool that supports user defined functions and units (basic and derived), so it can provide dimension-safe calculation (not embedded but via shell). Calculations can be modified/saved via shell. It uses rational numbers to avoid rounding errors where possible.<br />
<br />
;[http://code.google.com/p/dimensional/ Dimensional]<br />
: Library providing data types for performing arithmetic with physical quantities and units. Information about the physical dimensions of the quantities/units is embedded in their types and the validity of operations is verified by the type checker at compile time. The boxing and unboxing of numerical values as quantities is done by multiplication and division of units.<br />
<br />
=== Number representations ===<br />
<br />
==== Decimal numbers ====<br />
<br />
;[http://src.seereason.com/decimal/ Decimal arithmetic library]<br />
:An implementation of real decimal arithmetic, for cases where the binary floating point is not acceptable (for example, money).<br />
<br />
==== Real and rational numbers ====<br />
<br />
There are several levels of [[Exact real arithmetic|handling real numbers]] and according libraries.<br />
<br />
===== Arbitrary precision =====<br />
<br />
* Numbers have fixed precision<br />
* Rounding errors accumulate<br />
* Sharing is easy, i.e. in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> is computed only once<br />
* Fast, because the routines can make use of the fast implementation of <hask>Integer</hask> operations<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides, among other things, a type for arbitrary precision rational numbers with transcendental functions.<br />
<br />
;[http://cvs.haskell.org/darcs/numericprelude/src/Number/FixedPoint.hs FixedPoint.hs]<br />
:part of NumericPrelude project<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Basics AERN-Basics] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real AERN-Real] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Interval AERN-Real-Interval] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Double AERN-Real-Double]<br />
:contains type classes that form a foundation for ''rounded arithmetic'' and ''interval arithmetic'' with explicit control of rounding and the possibility to increase the rounding precision arbitrarily for types that support it. At the moment there are instances for Double floating point numbers where one can control the direction of rounding but cannot increase the rounding precision. In the near future instances for MPFR arbitrary precision numbers will be provided. Intervals can use as endpoints any type that supports directed rounding in the numerical order (such as Double or MPFR) and operations on intervals are rounded either outwards or inwards. Outwards rounding allows to safely approximate exact real arithmetic while a combination of both outwards and inwards rounding allows one to safely approximate exact interval arithmetic. Inverted intervals with Kaucher arithmetic are also supported.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-RnToRm AERN-RnToRm]<br />
:contains arithmetic of ''piecewise polynomial function intervals'' that approximate multi-dimensional (almost everywhere) continuous real functions to arbitrary precision<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmpfr hmpfr]<br />
:hmpfr is a purely functional haskell interface to the [http://www.mpfr.org/ MPFR] library<br />
<br />
===== Dynamic precision =====<br />
<br />
* You tell the precision, an expression shall be computed to and the computer finds out, how precise to compute the input values.<br />
* Rounding errors do not accumulate<br />
* Sharing of temporary results is difficult, that is in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> will certainly be computed twice, each time with the required precision.<br />
* Almost as fast as arbitrary precision computation<br />
<br />
;[http://www.cs.man.ac.uk/arch/dlester/exact.html ERA] is an implementation (in Haskell 1.2) by David Lester.<br />
: It is quite fast, possibly the fastest Haskell implementation. At 220 lines it is also the shortest. Probably the shortest implementation of exact real arithmetic in any language.<br />
: The provided number type <hask>CReal</hask> is instance of the Haskell 98 numeric type classes and thus can be used whereever you used Float or Double before and encountered some numerical difficulties.<br />
:Here is a mirror: http://darcs.augustsson.net/Darcs/CReal/<br />
<br />
;[http://www.doc.ic.ac.uk/~ae/exact-computation/#bm:implementations IC-Reals] is an implementation by Abbas Edalat, Marko Krznar&#263; and Peter J. Potts.<br />
:This implementation uses linear fractional transformations.<br />
<br />
;[http://r6.ca/ Few Digits] by Russell O'Connor.<br />
:This is a prototype of the implementation he intendeds to write in [http://coq.inria.fr/ Coq]. Once the Coq implementation is complete, the Haskell code could be extracted producing an implementation that would be proved correct.<br />
<!--<br />
Example:<br />
*Data.Real.CReal> answer 1000 (exp 1 + sqrt 2)<br />
--><br />
<br />
;COMP is an implementation by Yann Kieffer.<br />
:The work is in beta and relies on new primitive operations on Integers which will be implemented in GHC. The library isn't available yet.<br />
<br />
;[http://www2.arnes.si/~abizja4/hera/ Hera] is an implementation by Aleš Bizjak.<br />
:It uses the [http://www.mpfr.org/ MPFR] library to implement dyadic rationals, on top of which are implemented intervals and real numbers. A real number is represented as a function <code>int -&gt; interval</code> which represents a sequence of intervals converging to the real.<br />
<br />
===== Dynamic precision by lazy evaluation =====<br />
<br />
The real numbers are represented by an infinite datastructure, which allows you to increase precision successively by evaluating the data structure successively. All of the implementations below use some kind of digit stream as number representation.<br />
Sharing of results is simple.<br />
The implementations are either fast on simple expressions, because they use large blocks/bases, or they are fast on complex expressions, because they consume as little as possible input digits in order to emit the required output digits.<br />
<br />
;[http://medialab.freaknet.org/bignum/ BigFloat] is an implementation by Martin Guy.<br />
:It works with streams of decimal digits (strictly in the range from 0 to 9) and a separate sign. The produced digits are always correct. Output is postponed until the code is certain what the next digit is. This sometimes means that [http://medialab.freaknet.org/bignum/dudeney.html no more data is output].<br />
<br />
;In [http://users.info.unicaen.fr/~karczma/arpap/lazypi.ps.gz "The Most Unreliable Technique in the World to compute pi"] Jerzy Karczmarczuk develops some functions for computing pi lazily.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/Positional.hs NumericPrelude: positional numbers]<br />
:Represents a real number as pair <hask>(exponent,[digit])</hask>, where the digits are <hask>Int</hask>s in the open range <hask>(-basis,basis)</hask>. There is no need for an extra sign item in the number data structure. The <hask>basis</hask> can range from <hask>10</hask> to <hask>1000</hask>. (Binary representations can be derived from the hexadecimal representation.) Showing the numbers in traditional format (non-negative digits) fails for fractions ending with a run of zeros. However the internal representation with negative digits can always be shown and is probably more useful for further processing. An interface for the numeric type hierarchy of the NumericPrelude project is provided.<br />
:It features<br />
:* basis conversion<br />
:* basic arithmetic: addition, subtraction, multiplication, division<br />
:* algebraic arithmetic: square root, other roots (no general polynomial roots)<br />
:* transcendental arithmetic: pi, exponential, logarithm, trigonometric and inverse trigonometric functions<br />
<br />
=== Type class hierarchies ===<br />
<br />
There are several approaches to improve the [[Mathematical prelude discussion|numeric type class hierarchy]].<br />
<br />
;Dylan Thurston and Henning Thielemann's [[Numeric Prelude]]<br />
:Experimental revised framework for numeric type classes. Needs hiding of Prelude, overriding hidden functions like fromInteger and multi-parameter type classes. Probably restricted to GHC.<br />
<br />
;Jerzy Karczmarczuk's [http://www.haskell.org/pipermail/haskell-cafe/2001-February/001510.html approach]<br />
<br />
;Serge D. Mechveliani's [ftp://ftp.botik.ru/pub/local/Mechveliani/basAlgPropos/ Basic Algebra proposal]<br />
<br />
;Andrew Frank's [http://www.haskell.org/pipermail/haskell-cafe/2006-April/015326.html approach]<br />
:The proposal: ftp://ftp.geoinfo.tuwien.ac.at/frank/numbersPrelude_v1.pdf<br />
<br />
;Haskell Prime: [http://hackage.haskell.org/trac/haskell-prime/ticket/112 Ongoing efforts for the language revision]<br />
<br />
=== Discrete mathematics ===<br />
<br />
;[http://andrew.bromage.org/darcs/numbertheory/ Number Theory Library]<br />
:Andrew Bromage's Haskell number theory library, providing operations on primes, fibonacci sequences and combinatorics.<br />
<br />
;[http://users.skynet.be/jyp/HGAL/ HGAL]<br />
:An haskell implementation of Brendan McKay's algorithm for graph canonic labeling and automorphism group. (aka Nauty)<br />
<br />
;[http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521849306 Computational Oriented Matroids]<br />
:is a book by [http://wwwopt.mathematik.tu-darmstadt.de/~bokowski/ Jürgen G. Bokowski], where he develops Haskell code for Matroid computations.<br />
<br />
See also [[Libraries and tools/Cryptography]]<br />
<br />
=== Computer Algebra ===<br />
<br />
;[http://haskell.org/docon/ DoCon] - Algebraic Domain Constructor<br />
:A library for Algebra, turns GHCi into a kind of Computer Algebra System<br />
<br />
;[http://www.info.unicaen.fr/~karczma/arpap/ Papers by Jerzy Karczmarczuk]<br />
:Some interesting uses of Haskell in mathematics, including [[functional differentiation]], power series, continued fractions.<br />
<br />
=== Statistics ===<br />
;[http://www.sftank.net/?q=node/10 hstats]<br />
: Statistical Computing with Haskell<br />
<br />
=== Plotting ===<br />
<br />
;[[Gnuplot]]<br />
: Simple wrapper to gnuplot<br />
<br />
;[http://alberrto.googlepages.com/gslhaskell GSLHaskell]<br />
: gnuplot wrapper as part of GSL Haskell package<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Chart Chart]<br />
: A library for generating 2D Charts and Plots, based upon the cairo graphics library.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/plot plot]<br />
: A library for generating figures, based upon the cairo graphics libary with<br />
a simple, monadic interface.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/probability probability]<br />
: the module Numeric.Probability.Visualize contains a wrapper to [http://www.r-project.org/ R]<br />
<br />
;[https://github.com/scravy/SimplePlot SimplePlot]<br />
: Simple yet convenient wrapper to gnuplot by Julian Fleischer ([http://scravy.github.com/SimplePlot/Graphics-SimplePlot.html Documentation]).<br />
<br />
=== Miscellaneous libraries ===<br />
<br />
;[http://www.robtougher.com/HaskellMath/ HaskellMath]<br />
:The HaskellMath library is a sandbox for experimenting with mathematics algorithms. So far I've implemented a few quantitative finance models (Black Scholes, Binomial Trees, etc) and basic linear algebra functions. Next I might work on either computer algebra or linear programming. All comments welcome!<br />
<br />
;[http://hackage.haskell.org/package/HaskellForMaths HaskellForMaths]<br />
:David Amos' library for combinatorics, group theory, commutative algebra and non-commutative algebra, which is described in an [http://haskellformaths.blogspot.com/ accompanying blog].<br />
<br />
;[http://darcs.haskell.org/htam/ Various math stuff by Henning Thielemann]<br />
:This is some unsorted mathematical stuff including: gnuplot wrapper (now maintained as separate package), portable grey map (PGM) image reader and writer, simplest numerical integration, differentiation, zero finding, interpolation, solution of differential equations, combinatorics, some solutions of math riddles, computation of fractal dimensions of iterated function systems (IFS)<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski wrote a collection of Haskell modules that are useful for Mathematics in general, and Quantum Mechanics in particular.<br />
<br />
:Some of the modules are hosted on [http://darcs.haskell.org/numeric-quest/ haskell.org]. They include modules for:<br />
:* Rational numbers with transcendental functions<br />
:* Roots of polynomials<br />
:* Eigensystems<br />
:* Tensors<br />
:* Dirac quantum mechanics<br />
<br />
:Other modules in Numeric Quest are currently only available via the [http://web.archive.org/web/20010605003250/http://www.numeric-quest.com/haskell/ Internet Archive]. They include, among many other things:<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ State vector evolution]<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ Short study of fuzzy oscillator]<br />
<br />
:See the [[Numeric Quest]] page for more information.<br />
<br />
;[http://www.dinkla.net/fp/cglib.html Geometric Algorithms]<br />
:A small Haskell library, containing algorithms for two-dimensional convex hulls, triangulations of polygons, Voronoi-diagrams and Delaunay-triangulations, the QEDS data structure, kd-trees and range-trees.<br />
<br />
;[http://repetae.net/john/recent/out/HsASA.html Adaptive Simulated Annealing]<br />
:A Haskell interface to Lester Ingber's adaptive simulating annealing code.<br />
<br />
;[http://home.solcon.nl/mklooster/repos/hmm/ Hmm: Haskell Metamath]<br />
:Hmm is a small Haskell library to parse and verify Metamath databases.<br />
<br />
;[[Probabilistic Functional Programming]]<br />
:The PFP library is a collection of modules for Haskell that facilitates probabilistic functional programming, that is, programming with stochastic values. The probabilistic functional programming approach is based on a data type for representing distributions. A distribution represent the outcome of a probabilistic event as a collection of all possible values, tagged with their likelihood. A nice aspect of this system is that simulations can be specified independently from their method of execution. That is, we can either fully simulate or randomize any simulation without altering the code which defines it.<br />
<br />
;[[Sinc function]]<br />
<br />
;[[Gamma and Beta function]]<br />
<br />
;[http://repetae.net/john/recent/out/Boolean.html Boolean]<br />
:A general boolean algebra class and some instances for Haskell.<br />
<br />
;[http://darcs.haskell.org/~lemmih/hode/ HODE]<br />
:HODE is a binding to the Open Dynamics Engine. ODE is an open source, high performance library for simulating rigid body dynamics.<br />
<br />
;[http://sourceforge.net/projects/ranged-sets Ranged Sets]<br />
:A ranged set is a list of non-overlapping ranges. The ranges have upper and lower boundaries, and a boundary divides the base type into values above and below. No value can ever sit on a boundary. So you can have the set <math>(2.0, 3.0] \cup (5.3, 6)</math>.<br />
<br />
;[http://code.google.com/p/hhydra/ hhydra]<br />
:Hhydra is a tool to compute Goodstein successions and hydra puzzles described by Bernard Hodgson in his article 'Herculean or Sisyphean tasks?' published in No 51 March 2004 of the Newsletter of the European Mathematical Society.<br />
<br />
[[Category:Mathematics|*]]<br />
{{LibrariesPage}}</div>Scravyhttps://wiki.haskell.org/index.php?title=Applications_and_libraries/Mathematics&diff=45546Applications and libraries/Mathematics2012-05-02T00:40:51Z<p>Scravy: /* Plotting */</p>
<hr />
<div>== Applications ==<br />
<br />
=== Physics ===<br />
<br />
;[http://ab-initio.mit.edu/meep/ Meep]<br />
:Meep (or MEEP) is a free finite-difference time-domain (FDTD) simulation software package developed at MIT to model electromagnetic systems.<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides modules that are useful for Quantum Mechanics, among other things.<br />
<br />
== Libraries ==<br />
<br />
=== Linear algebra ===<br />
<br />
;[https://github.com/patperry/hs-linear-algebra hs-linear-algebra]<br />
:Patrick Perry's linear algebra library, built on BLAS.<br />
<br />
;[http://www.cs.utah.edu/~hal/HBlas/index.html Wrapper to CLAPACK]<br />
<br />
;[http://haskelldsp.sourceforge.net/ Digital Signal Processing]<br />
:Modules for matrix manipulation, Fourier transform, interpolation, spectral estimation, and frequency estimation.<br />
<br />
;[http://article.gmane.org/gmane.comp.lang.haskell.general/13561 Index-aware linear algebra]<br />
:Frederik Eaton's library for statically checked matrix manipulation in Haskell<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides several modules that are useful for linear algebra in general, among other things.<br />
<br />
;[[vector-space]]<br />
:The [[vector-space]] package defines classes and generic operations for vector spaces and affine spaces. It also defines a type of infinite towers of generalized derivatives (linear transformations).<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmatrix HMatrix]<br />
:By Alberto Ruiz. From the project [http://perception.inf.um.es/hmatrix/ website]:<br />
::''A purely functional interface to linear algebra and other numerical algorithms, internally implemented using LAPACK, BLAS, and GSL.<br />
<br />
::''This package includes standard matrix decompositions (eigensystems, singular values, Cholesky, QR, etc.), linear systems, numeric integration, root finding, etc.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Vec Vec]<br />
:By Scott E. Dillard. Static dimension checking:<br />
::''Vectors are represented by lists with type-encoded lengths. The constructor is :., which acts like a cons both at the value and type levels, with () taking the place of nil. So x:.y:.z:.() is a 3d vector. The library provides a set of common list-like functions (map, fold, etc) for working with vectors. Built up from these functions are a small but useful set of linear algebra operations: matrix multiplication, determinants, solving linear systems, inverting matrices.''<br />
<br />
== See also ==<br />
<br />
* [[Linear algebra]]<br />
* [[Mathematical prelude discussion]]<br />
<br />
<br />
See also: [[Linear algebra|Design discussions]]<br />
<br />
=== [[Physical units]] ===<br />
<br />
;[[Dimensionalized numbers]]<br />
: Working with physical units like second, meter and so on in a type-safe manner.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/SI.hs NumericPrelude: Physical units]<br />
: Numeric values with dynamically checked units.<br />
<br />
;[[CalDims]]<br />
:This is not simply a library providing a new type of <hask>Num</hask> class, but stand-alone calculation tool that supports user defined functions and units (basic and derived), so it can provide dimension-safe calculation (not embedded but via shell). Calculations can be modified/saved via shell. It uses rational numbers to avoid rounding errors where possible.<br />
<br />
;[http://code.google.com/p/dimensional/ Dimensional]<br />
: Library providing data types for performing arithmetic with physical quantities and units. Information about the physical dimensions of the quantities/units is embedded in their types and the validity of operations is verified by the type checker at compile time. The boxing and unboxing of numerical values as quantities is done by multiplication and division of units.<br />
<br />
=== Number representations ===<br />
<br />
==== Decimal numbers ====<br />
<br />
;[http://src.seereason.com/decimal/ Decimal arithmetic library]<br />
:An implementation of real decimal arithmetic, for cases where the binary floating point is not acceptable (for example, money).<br />
<br />
==== Real and rational numbers ====<br />
<br />
There are several levels of [[Exact real arithmetic|handling real numbers]] and according libraries.<br />
<br />
===== Arbitrary precision =====<br />
<br />
* Numbers have fixed precision<br />
* Rounding errors accumulate<br />
* Sharing is easy, i.e. in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> is computed only once<br />
* Fast, because the routines can make use of the fast implementation of <hask>Integer</hask> operations<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides, among other things, a type for arbitrary precision rational numbers with transcendental functions.<br />
<br />
;[http://cvs.haskell.org/darcs/numericprelude/src/Number/FixedPoint.hs FixedPoint.hs]<br />
:part of NumericPrelude project<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Basics AERN-Basics] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real AERN-Real] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Interval AERN-Real-Interval] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Double AERN-Real-Double]<br />
:contains type classes that form a foundation for ''rounded arithmetic'' and ''interval arithmetic'' with explicit control of rounding and the possibility to increase the rounding precision arbitrarily for types that support it. At the moment there are instances for Double floating point numbers where one can control the direction of rounding but cannot increase the rounding precision. In the near future instances for MPFR arbitrary precision numbers will be provided. Intervals can use as endpoints any type that supports directed rounding in the numerical order (such as Double or MPFR) and operations on intervals are rounded either outwards or inwards. Outwards rounding allows to safely approximate exact real arithmetic while a combination of both outwards and inwards rounding allows one to safely approximate exact interval arithmetic. Inverted intervals with Kaucher arithmetic are also supported.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-RnToRm AERN-RnToRm]<br />
:contains arithmetic of ''piecewise polynomial function intervals'' that approximate multi-dimensional (almost everywhere) continuous real functions to arbitrary precision<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmpfr hmpfr]<br />
:hmpfr is a purely functional haskell interface to the [http://www.mpfr.org/ MPFR] library<br />
<br />
===== Dynamic precision =====<br />
<br />
* You tell the precision, an expression shall be computed to and the computer finds out, how precise to compute the input values.<br />
* Rounding errors do not accumulate<br />
* Sharing of temporary results is difficult, that is in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> will certainly be computed twice, each time with the required precision.<br />
* Almost as fast as arbitrary precision computation<br />
<br />
;[http://www.cs.man.ac.uk/arch/dlester/exact.html ERA] is an implementation (in Haskell 1.2) by David Lester.<br />
: It is quite fast, possibly the fastest Haskell implementation. At 220 lines it is also the shortest. Probably the shortest implementation of exact real arithmetic in any language.<br />
: The provided number type <hask>CReal</hask> is instance of the Haskell 98 numeric type classes and thus can be used whereever you used Float or Double before and encountered some numerical difficulties.<br />
:Here is a mirror: http://darcs.augustsson.net/Darcs/CReal/<br />
<br />
;[http://www.doc.ic.ac.uk/~ae/exact-computation/#bm:implementations IC-Reals] is an implementation by Abbas Edalat, Marko Krznar&#263; and Peter J. Potts.<br />
:This implementation uses linear fractional transformations.<br />
<br />
;[http://r6.ca/ Few Digits] by Russell O'Connor.<br />
:This is a prototype of the implementation he intendeds to write in [http://coq.inria.fr/ Coq]. Once the Coq implementation is complete, the Haskell code could be extracted producing an implementation that would be proved correct.<br />
<!--<br />
Example:<br />
*Data.Real.CReal> answer 1000 (exp 1 + sqrt 2)<br />
--><br />
<br />
;COMP is an implementation by Yann Kieffer.<br />
:The work is in beta and relies on new primitive operations on Integers which will be implemented in GHC. The library isn't available yet.<br />
<br />
;[http://www2.arnes.si/~abizja4/hera/ Hera] is an implementation by Aleš Bizjak.<br />
:It uses the [http://www.mpfr.org/ MPFR] library to implement dyadic rationals, on top of which are implemented intervals and real numbers. A real number is represented as a function <code>int -&gt; interval</code> which represents a sequence of intervals converging to the real.<br />
<br />
===== Dynamic precision by lazy evaluation =====<br />
<br />
The real numbers are represented by an infinite datastructure, which allows you to increase precision successively by evaluating the data structure successively. All of the implementations below use some kind of digit stream as number representation.<br />
Sharing of results is simple.<br />
The implementations are either fast on simple expressions, because they use large blocks/bases, or they are fast on complex expressions, because they consume as little as possible input digits in order to emit the required output digits.<br />
<br />
;[http://medialab.freaknet.org/bignum/ BigFloat] is an implementation by Martin Guy.<br />
:It works with streams of decimal digits (strictly in the range from 0 to 9) and a separate sign. The produced digits are always correct. Output is postponed until the code is certain what the next digit is. This sometimes means that [http://medialab.freaknet.org/bignum/dudeney.html no more data is output].<br />
<br />
;In [http://users.info.unicaen.fr/~karczma/arpap/lazypi.ps.gz "The Most Unreliable Technique in the World to compute pi"] Jerzy Karczmarczuk develops some functions for computing pi lazily.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/Positional.hs NumericPrelude: positional numbers]<br />
:Represents a real number as pair <hask>(exponent,[digit])</hask>, where the digits are <hask>Int</hask>s in the open range <hask>(-basis,basis)</hask>. There is no need for an extra sign item in the number data structure. The <hask>basis</hask> can range from <hask>10</hask> to <hask>1000</hask>. (Binary representations can be derived from the hexadecimal representation.) Showing the numbers in traditional format (non-negative digits) fails for fractions ending with a run of zeros. However the internal representation with negative digits can always be shown and is probably more useful for further processing. An interface for the numeric type hierarchy of the NumericPrelude project is provided.<br />
:It features<br />
:* basis conversion<br />
:* basic arithmetic: addition, subtraction, multiplication, division<br />
:* algebraic arithmetic: square root, other roots (no general polynomial roots)<br />
:* transcendental arithmetic: pi, exponential, logarithm, trigonometric and inverse trigonometric functions<br />
<br />
=== Type class hierarchies ===<br />
<br />
There are several approaches to improve the [[Mathematical prelude discussion|numeric type class hierarchy]].<br />
<br />
;Dylan Thurston and Henning Thielemann's [[Numeric Prelude]]<br />
:Experimental revised framework for numeric type classes. Needs hiding of Prelude, overriding hidden functions like fromInteger and multi-parameter type classes. Probably restricted to GHC.<br />
<br />
;Jerzy Karczmarczuk's [http://www.haskell.org/pipermail/haskell-cafe/2001-February/001510.html approach]<br />
<br />
;Serge D. Mechveliani's [ftp://ftp.botik.ru/pub/local/Mechveliani/basAlgPropos/ Basic Algebra proposal]<br />
<br />
;Andrew Frank's [http://www.haskell.org/pipermail/haskell-cafe/2006-April/015326.html approach]<br />
:The proposal: ftp://ftp.geoinfo.tuwien.ac.at/frank/numbersPrelude_v1.pdf<br />
<br />
;Haskell Prime: [http://hackage.haskell.org/trac/haskell-prime/ticket/112 Ongoing efforts for the language revision]<br />
<br />
=== Discrete mathematics ===<br />
<br />
;[http://andrew.bromage.org/darcs/numbertheory/ Number Theory Library]<br />
:Andrew Bromage's Haskell number theory library, providing operations on primes, fibonacci sequences and combinatorics.<br />
<br />
;[http://users.skynet.be/jyp/HGAL/ HGAL]<br />
:An haskell implementation of Brendan McKay's algorithm for graph canonic labeling and automorphism group. (aka Nauty)<br />
<br />
;[http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521849306 Computational Oriented Matroids]<br />
:is a book by [http://wwwopt.mathematik.tu-darmstadt.de/~bokowski/ Jürgen G. Bokowski], where he develops Haskell code for Matroid computations.<br />
<br />
See also [[Libraries and tools/Cryptography]]<br />
<br />
=== Computer Algebra ===<br />
<br />
;[http://haskell.org/docon/ DoCon] - Algebraic Domain Constructor<br />
:A library for Algebra, turns GHCi into a kind of Computer Algebra System<br />
<br />
;[http://www.info.unicaen.fr/~karczma/arpap/ Papers by Jerzy Karczmarczuk]<br />
:Some interesting uses of Haskell in mathematics, including [[functional differentiation]], power series, continued fractions.<br />
<br />
=== Statistics ===<br />
;[http://www.sftank.net/?q=node/10 hstats]<br />
: Statistical Computing with Haskell<br />
<br />
=== Plotting ===<br />
<br />
;[[Gnuplot]]<br />
: Simple wrapper to gnuplot<br />
<br />
;[http://alberrto.googlepages.com/gslhaskell GSLHaskell]<br />
: gnuplot wrapper as part of GSL Haskell package<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Chart Chart]<br />
: A library for generating 2D Charts and Plots, based upon the cairo graphics library.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/plot plot]<br />
: A library for generating figures, based upon the cairo graphics libary with<br />
a simple, monadic interface.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/probability probability]<br />
: the module Numeric.Probability.Visualize contains a wrapper to [http://www.r-project.org/ R]<br />
<br />
;[https://github.com/scravy/SimplePlot SimplePlot]<br />
: Simple yet convenient wrapper to gnuplot by Julian Fleischer.<br />
<br />
=== Miscellaneous libraries ===<br />
<br />
;[http://www.robtougher.com/HaskellMath/ HaskellMath]<br />
:The HaskellMath library is a sandbox for experimenting with mathematics algorithms. So far I've implemented a few quantitative finance models (Black Scholes, Binomial Trees, etc) and basic linear algebra functions. Next I might work on either computer algebra or linear programming. All comments welcome!<br />
<br />
;[http://hackage.haskell.org/package/HaskellForMaths HaskellForMaths]<br />
:David Amos' library for combinatorics, group theory, commutative algebra and non-commutative algebra, which is described in an [http://haskellformaths.blogspot.com/ accompanying blog].<br />
<br />
;[http://darcs.haskell.org/htam/ Various math stuff by Henning Thielemann]<br />
:This is some unsorted mathematical stuff including: gnuplot wrapper (now maintained as separate package), portable grey map (PGM) image reader and writer, simplest numerical integration, differentiation, zero finding, interpolation, solution of differential equations, combinatorics, some solutions of math riddles, computation of fractal dimensions of iterated function systems (IFS)<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski wrote a collection of Haskell modules that are useful for Mathematics in general, and Quantum Mechanics in particular.<br />
<br />
:Some of the modules are hosted on [http://darcs.haskell.org/numeric-quest/ haskell.org]. They include modules for:<br />
:* Rational numbers with transcendental functions<br />
:* Roots of polynomials<br />
:* Eigensystems<br />
:* Tensors<br />
:* Dirac quantum mechanics<br />
<br />
:Other modules in Numeric Quest are currently only available via the [http://web.archive.org/web/20010605003250/http://www.numeric-quest.com/haskell/ Internet Archive]. They include, among many other things:<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ State vector evolution]<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ Short study of fuzzy oscillator]<br />
<br />
:See the [[Numeric Quest]] page for more information.<br />
<br />
;[http://www.dinkla.net/fp/cglib.html Geometric Algorithms]<br />
:A small Haskell library, containing algorithms for two-dimensional convex hulls, triangulations of polygons, Voronoi-diagrams and Delaunay-triangulations, the QEDS data structure, kd-trees and range-trees.<br />
<br />
;[http://repetae.net/john/recent/out/HsASA.html Adaptive Simulated Annealing]<br />
:A Haskell interface to Lester Ingber's adaptive simulating annealing code.<br />
<br />
;[http://home.solcon.nl/mklooster/repos/hmm/ Hmm: Haskell Metamath]<br />
:Hmm is a small Haskell library to parse and verify Metamath databases.<br />
<br />
;[[Probabilistic Functional Programming]]<br />
:The PFP library is a collection of modules for Haskell that facilitates probabilistic functional programming, that is, programming with stochastic values. The probabilistic functional programming approach is based on a data type for representing distributions. A distribution represent the outcome of a probabilistic event as a collection of all possible values, tagged with their likelihood. A nice aspect of this system is that simulations can be specified independently from their method of execution. That is, we can either fully simulate or randomize any simulation without altering the code which defines it.<br />
<br />
;[[Sinc function]]<br />
<br />
;[[Gamma and Beta function]]<br />
<br />
;[http://repetae.net/john/recent/out/Boolean.html Boolean]<br />
:A general boolean algebra class and some instances for Haskell.<br />
<br />
;[http://darcs.haskell.org/~lemmih/hode/ HODE]<br />
:HODE is a binding to the Open Dynamics Engine. ODE is an open source, high performance library for simulating rigid body dynamics.<br />
<br />
;[http://sourceforge.net/projects/ranged-sets Ranged Sets]<br />
:A ranged set is a list of non-overlapping ranges. The ranges have upper and lower boundaries, and a boundary divides the base type into values above and below. No value can ever sit on a boundary. So you can have the set <math>(2.0, 3.0] \cup (5.3, 6)</math>.<br />
<br />
;[http://code.google.com/p/hhydra/ hhydra]<br />
:Hhydra is a tool to compute Goodstein successions and hydra puzzles described by Bernard Hodgson in his article 'Herculean or Sisyphean tasks?' published in No 51 March 2004 of the Newsletter of the European Mathematical Society.<br />
<br />
[[Category:Mathematics|*]]<br />
{{LibrariesPage}}</div>Scravyhttps://wiki.haskell.org/index.php?title=Applications_and_libraries/Mathematics&diff=45545Applications and libraries/Mathematics2012-05-02T00:27:56Z<p>Scravy: /* Plotting */ + SimplePlot at github</p>
<hr />
<div>== Applications ==<br />
<br />
=== Physics ===<br />
<br />
;[http://ab-initio.mit.edu/meep/ Meep]<br />
:Meep (or MEEP) is a free finite-difference time-domain (FDTD) simulation software package developed at MIT to model electromagnetic systems.<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides modules that are useful for Quantum Mechanics, among other things.<br />
<br />
== Libraries ==<br />
<br />
=== Linear algebra ===<br />
<br />
;[https://github.com/patperry/hs-linear-algebra hs-linear-algebra]<br />
:Patrick Perry's linear algebra library, built on BLAS.<br />
<br />
;[http://www.cs.utah.edu/~hal/HBlas/index.html Wrapper to CLAPACK]<br />
<br />
;[http://haskelldsp.sourceforge.net/ Digital Signal Processing]<br />
:Modules for matrix manipulation, Fourier transform, interpolation, spectral estimation, and frequency estimation.<br />
<br />
;[http://article.gmane.org/gmane.comp.lang.haskell.general/13561 Index-aware linear algebra]<br />
:Frederik Eaton's library for statically checked matrix manipulation in Haskell<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides several modules that are useful for linear algebra in general, among other things.<br />
<br />
;[[vector-space]]<br />
:The [[vector-space]] package defines classes and generic operations for vector spaces and affine spaces. It also defines a type of infinite towers of generalized derivatives (linear transformations).<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmatrix HMatrix]<br />
:By Alberto Ruiz. From the project [http://perception.inf.um.es/hmatrix/ website]:<br />
::''A purely functional interface to linear algebra and other numerical algorithms, internally implemented using LAPACK, BLAS, and GSL.<br />
<br />
::''This package includes standard matrix decompositions (eigensystems, singular values, Cholesky, QR, etc.), linear systems, numeric integration, root finding, etc.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Vec Vec]<br />
:By Scott E. Dillard. Static dimension checking:<br />
::''Vectors are represented by lists with type-encoded lengths. The constructor is :., which acts like a cons both at the value and type levels, with () taking the place of nil. So x:.y:.z:.() is a 3d vector. The library provides a set of common list-like functions (map, fold, etc) for working with vectors. Built up from these functions are a small but useful set of linear algebra operations: matrix multiplication, determinants, solving linear systems, inverting matrices.''<br />
<br />
== See also ==<br />
<br />
* [[Linear algebra]]<br />
* [[Mathematical prelude discussion]]<br />
<br />
<br />
See also: [[Linear algebra|Design discussions]]<br />
<br />
=== [[Physical units]] ===<br />
<br />
;[[Dimensionalized numbers]]<br />
: Working with physical units like second, meter and so on in a type-safe manner.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/SI.hs NumericPrelude: Physical units]<br />
: Numeric values with dynamically checked units.<br />
<br />
;[[CalDims]]<br />
:This is not simply a library providing a new type of <hask>Num</hask> class, but stand-alone calculation tool that supports user defined functions and units (basic and derived), so it can provide dimension-safe calculation (not embedded but via shell). Calculations can be modified/saved via shell. It uses rational numbers to avoid rounding errors where possible.<br />
<br />
;[http://code.google.com/p/dimensional/ Dimensional]<br />
: Library providing data types for performing arithmetic with physical quantities and units. Information about the physical dimensions of the quantities/units is embedded in their types and the validity of operations is verified by the type checker at compile time. The boxing and unboxing of numerical values as quantities is done by multiplication and division of units.<br />
<br />
=== Number representations ===<br />
<br />
==== Decimal numbers ====<br />
<br />
;[http://src.seereason.com/decimal/ Decimal arithmetic library]<br />
:An implementation of real decimal arithmetic, for cases where the binary floating point is not acceptable (for example, money).<br />
<br />
==== Real and rational numbers ====<br />
<br />
There are several levels of [[Exact real arithmetic|handling real numbers]] and according libraries.<br />
<br />
===== Arbitrary precision =====<br />
<br />
* Numbers have fixed precision<br />
* Rounding errors accumulate<br />
* Sharing is easy, i.e. in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> is computed only once<br />
* Fast, because the routines can make use of the fast implementation of <hask>Integer</hask> operations<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski's [[Numeric Quest]] library provides, among other things, a type for arbitrary precision rational numbers with transcendental functions.<br />
<br />
;[http://cvs.haskell.org/darcs/numericprelude/src/Number/FixedPoint.hs FixedPoint.hs]<br />
:part of NumericPrelude project<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Basics AERN-Basics] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real AERN-Real] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Interval AERN-Real-Interval] [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-Real-Double AERN-Real-Double]<br />
:contains type classes that form a foundation for ''rounded arithmetic'' and ''interval arithmetic'' with explicit control of rounding and the possibility to increase the rounding precision arbitrarily for types that support it. At the moment there are instances for Double floating point numbers where one can control the direction of rounding but cannot increase the rounding precision. In the near future instances for MPFR arbitrary precision numbers will be provided. Intervals can use as endpoints any type that supports directed rounding in the numerical order (such as Double or MPFR) and operations on intervals are rounded either outwards or inwards. Outwards rounding allows to safely approximate exact real arithmetic while a combination of both outwards and inwards rounding allows one to safely approximate exact interval arithmetic. Inverted intervals with Kaucher arithmetic are also supported.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/AERN-RnToRm AERN-RnToRm]<br />
:contains arithmetic of ''piecewise polynomial function intervals'' that approximate multi-dimensional (almost everywhere) continuous real functions to arbitrary precision<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hmpfr hmpfr]<br />
:hmpfr is a purely functional haskell interface to the [http://www.mpfr.org/ MPFR] library<br />
<br />
===== Dynamic precision =====<br />
<br />
* You tell the precision, an expression shall be computed to and the computer finds out, how precise to compute the input values.<br />
* Rounding errors do not accumulate<br />
* Sharing of temporary results is difficult, that is in <hask>sqrt pi + sin pi</hask>, <hask>pi</hask> will certainly be computed twice, each time with the required precision.<br />
* Almost as fast as arbitrary precision computation<br />
<br />
;[http://www.cs.man.ac.uk/arch/dlester/exact.html ERA] is an implementation (in Haskell 1.2) by David Lester.<br />
: It is quite fast, possibly the fastest Haskell implementation. At 220 lines it is also the shortest. Probably the shortest implementation of exact real arithmetic in any language.<br />
: The provided number type <hask>CReal</hask> is instance of the Haskell 98 numeric type classes and thus can be used whereever you used Float or Double before and encountered some numerical difficulties.<br />
:Here is a mirror: http://darcs.augustsson.net/Darcs/CReal/<br />
<br />
;[http://www.doc.ic.ac.uk/~ae/exact-computation/#bm:implementations IC-Reals] is an implementation by Abbas Edalat, Marko Krznar&#263; and Peter J. Potts.<br />
:This implementation uses linear fractional transformations.<br />
<br />
;[http://r6.ca/ Few Digits] by Russell O'Connor.<br />
:This is a prototype of the implementation he intendeds to write in [http://coq.inria.fr/ Coq]. Once the Coq implementation is complete, the Haskell code could be extracted producing an implementation that would be proved correct.<br />
<!--<br />
Example:<br />
*Data.Real.CReal> answer 1000 (exp 1 + sqrt 2)<br />
--><br />
<br />
;COMP is an implementation by Yann Kieffer.<br />
:The work is in beta and relies on new primitive operations on Integers which will be implemented in GHC. The library isn't available yet.<br />
<br />
;[http://www2.arnes.si/~abizja4/hera/ Hera] is an implementation by Aleš Bizjak.<br />
:It uses the [http://www.mpfr.org/ MPFR] library to implement dyadic rationals, on top of which are implemented intervals and real numbers. A real number is represented as a function <code>int -&gt; interval</code> which represents a sequence of intervals converging to the real.<br />
<br />
===== Dynamic precision by lazy evaluation =====<br />
<br />
The real numbers are represented by an infinite datastructure, which allows you to increase precision successively by evaluating the data structure successively. All of the implementations below use some kind of digit stream as number representation.<br />
Sharing of results is simple.<br />
The implementations are either fast on simple expressions, because they use large blocks/bases, or they are fast on complex expressions, because they consume as little as possible input digits in order to emit the required output digits.<br />
<br />
;[http://medialab.freaknet.org/bignum/ BigFloat] is an implementation by Martin Guy.<br />
:It works with streams of decimal digits (strictly in the range from 0 to 9) and a separate sign. The produced digits are always correct. Output is postponed until the code is certain what the next digit is. This sometimes means that [http://medialab.freaknet.org/bignum/dudeney.html no more data is output].<br />
<br />
;In [http://users.info.unicaen.fr/~karczma/arpap/lazypi.ps.gz "The Most Unreliable Technique in the World to compute pi"] Jerzy Karczmarczuk develops some functions for computing pi lazily.<br />
<br />
;[http://darcs.haskell.org/numericprelude/src/Number/Positional.hs NumericPrelude: positional numbers]<br />
:Represents a real number as pair <hask>(exponent,[digit])</hask>, where the digits are <hask>Int</hask>s in the open range <hask>(-basis,basis)</hask>. There is no need for an extra sign item in the number data structure. The <hask>basis</hask> can range from <hask>10</hask> to <hask>1000</hask>. (Binary representations can be derived from the hexadecimal representation.) Showing the numbers in traditional format (non-negative digits) fails for fractions ending with a run of zeros. However the internal representation with negative digits can always be shown and is probably more useful for further processing. An interface for the numeric type hierarchy of the NumericPrelude project is provided.<br />
:It features<br />
:* basis conversion<br />
:* basic arithmetic: addition, subtraction, multiplication, division<br />
:* algebraic arithmetic: square root, other roots (no general polynomial roots)<br />
:* transcendental arithmetic: pi, exponential, logarithm, trigonometric and inverse trigonometric functions<br />
<br />
=== Type class hierarchies ===<br />
<br />
There are several approaches to improve the [[Mathematical prelude discussion|numeric type class hierarchy]].<br />
<br />
;Dylan Thurston and Henning Thielemann's [[Numeric Prelude]]<br />
:Experimental revised framework for numeric type classes. Needs hiding of Prelude, overriding hidden functions like fromInteger and multi-parameter type classes. Probably restricted to GHC.<br />
<br />
;Jerzy Karczmarczuk's [http://www.haskell.org/pipermail/haskell-cafe/2001-February/001510.html approach]<br />
<br />
;Serge D. Mechveliani's [ftp://ftp.botik.ru/pub/local/Mechveliani/basAlgPropos/ Basic Algebra proposal]<br />
<br />
;Andrew Frank's [http://www.haskell.org/pipermail/haskell-cafe/2006-April/015326.html approach]<br />
:The proposal: ftp://ftp.geoinfo.tuwien.ac.at/frank/numbersPrelude_v1.pdf<br />
<br />
;Haskell Prime: [http://hackage.haskell.org/trac/haskell-prime/ticket/112 Ongoing efforts for the language revision]<br />
<br />
=== Discrete mathematics ===<br />
<br />
;[http://andrew.bromage.org/darcs/numbertheory/ Number Theory Library]<br />
:Andrew Bromage's Haskell number theory library, providing operations on primes, fibonacci sequences and combinatorics.<br />
<br />
;[http://users.skynet.be/jyp/HGAL/ HGAL]<br />
:An haskell implementation of Brendan McKay's algorithm for graph canonic labeling and automorphism group. (aka Nauty)<br />
<br />
;[http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521849306 Computational Oriented Matroids]<br />
:is a book by [http://wwwopt.mathematik.tu-darmstadt.de/~bokowski/ Jürgen G. Bokowski], where he develops Haskell code for Matroid computations.<br />
<br />
See also [[Libraries and tools/Cryptography]]<br />
<br />
=== Computer Algebra ===<br />
<br />
;[http://haskell.org/docon/ DoCon] - Algebraic Domain Constructor<br />
:A library for Algebra, turns GHCi into a kind of Computer Algebra System<br />
<br />
;[http://www.info.unicaen.fr/~karczma/arpap/ Papers by Jerzy Karczmarczuk]<br />
:Some interesting uses of Haskell in mathematics, including [[functional differentiation]], power series, continued fractions.<br />
<br />
=== Statistics ===<br />
;[http://www.sftank.net/?q=node/10 hstats]<br />
: Statistical Computing with Haskell<br />
<br />
=== Plotting ===<br />
<br />
;[[Gnuplot]]<br />
: Simple wrapper to gnuplot<br />
<br />
;[http://alberrto.googlepages.com/gslhaskell GSLHaskell]<br />
: gnuplot wrapper as part of GSL Haskell package<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Chart Chart]<br />
: A library for generating 2D Charts and Plots, based upon the cairo graphics library.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/plot plot]<br />
: A library for generating figures, based upon the cairo graphics libary with<br />
a simple, monadic interface.<br />
<br />
;[http://hackage.haskell.org/cgi-bin/hackage-scripts/package/probability probability]<br />
: the module Numeric.Probability.Visualize contains a wrapper to [http://www.r-project.org/ R]<br />
<br />
;[https://github.com/scravy/SimplePlot SimplePlot]<br />
: Simple yet convenient wrapper to gnuplot.<br />
<br />
=== Miscellaneous libraries ===<br />
<br />
;[http://www.robtougher.com/HaskellMath/ HaskellMath]<br />
:The HaskellMath library is a sandbox for experimenting with mathematics algorithms. So far I've implemented a few quantitative finance models (Black Scholes, Binomial Trees, etc) and basic linear algebra functions. Next I might work on either computer algebra or linear programming. All comments welcome!<br />
<br />
;[http://hackage.haskell.org/package/HaskellForMaths HaskellForMaths]<br />
:David Amos' library for combinatorics, group theory, commutative algebra and non-commutative algebra, which is described in an [http://haskellformaths.blogspot.com/ accompanying blog].<br />
<br />
;[http://darcs.haskell.org/htam/ Various math stuff by Henning Thielemann]<br />
:This is some unsorted mathematical stuff including: gnuplot wrapper (now maintained as separate package), portable grey map (PGM) image reader and writer, simplest numerical integration, differentiation, zero finding, interpolation, solution of differential equations, combinatorics, some solutions of math riddles, computation of fractal dimensions of iterated function systems (IFS)<br />
<br />
;[[Numeric Quest]]<br />
:Jan Skibinski wrote a collection of Haskell modules that are useful for Mathematics in general, and Quantum Mechanics in particular.<br />
<br />
:Some of the modules are hosted on [http://darcs.haskell.org/numeric-quest/ haskell.org]. They include modules for:<br />
:* Rational numbers with transcendental functions<br />
:* Roots of polynomials<br />
:* Eigensystems<br />
:* Tensors<br />
:* Dirac quantum mechanics<br />
<br />
:Other modules in Numeric Quest are currently only available via the [http://web.archive.org/web/20010605003250/http://www.numeric-quest.com/haskell/ Internet Archive]. They include, among many other things:<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ State vector evolution]<br />
:* [http://web.archive.org/web/*/http://www.numeric-quest.com/haskell/ Short study of fuzzy oscillator]<br />
<br />
:See the [[Numeric Quest]] page for more information.<br />
<br />
;[http://www.dinkla.net/fp/cglib.html Geometric Algorithms]<br />
:A small Haskell library, containing algorithms for two-dimensional convex hulls, triangulations of polygons, Voronoi-diagrams and Delaunay-triangulations, the QEDS data structure, kd-trees and range-trees.<br />
<br />
;[http://repetae.net/john/recent/out/HsASA.html Adaptive Simulated Annealing]<br />
:A Haskell interface to Lester Ingber's adaptive simulating annealing code.<br />
<br />
;[http://home.solcon.nl/mklooster/repos/hmm/ Hmm: Haskell Metamath]<br />
:Hmm is a small Haskell library to parse and verify Metamath databases.<br />
<br />
;[[Probabilistic Functional Programming]]<br />
:The PFP library is a collection of modules for Haskell that facilitates probabilistic functional programming, that is, programming with stochastic values. The probabilistic functional programming approach is based on a data type for representing distributions. A distribution represent the outcome of a probabilistic event as a collection of all possible values, tagged with their likelihood. A nice aspect of this system is that simulations can be specified independently from their method of execution. That is, we can either fully simulate or randomize any simulation without altering the code which defines it.<br />
<br />
;[[Sinc function]]<br />
<br />
;[[Gamma and Beta function]]<br />
<br />
;[http://repetae.net/john/recent/out/Boolean.html Boolean]<br />
:A general boolean algebra class and some instances for Haskell.<br />
<br />
;[http://darcs.haskell.org/~lemmih/hode/ HODE]<br />
:HODE is a binding to the Open Dynamics Engine. ODE is an open source, high performance library for simulating rigid body dynamics.<br />
<br />
;[http://sourceforge.net/projects/ranged-sets Ranged Sets]<br />
:A ranged set is a list of non-overlapping ranges. The ranges have upper and lower boundaries, and a boundary divides the base type into values above and below. No value can ever sit on a boundary. So you can have the set <math>(2.0, 3.0] \cup (5.3, 6)</math>.<br />
<br />
;[http://code.google.com/p/hhydra/ hhydra]<br />
:Hhydra is a tool to compute Goodstein successions and hydra puzzles described by Bernard Hodgson in his article 'Herculean or Sisyphean tasks?' published in No 51 March 2004 of the Newsletter of the European Mathematical Society.<br />
<br />
[[Category:Mathematics|*]]<br />
{{LibrariesPage}}</div>Scravy