HIW'14 . September 6th 2014

Partial Type Signatures

Thomas Winant

- TN
\,

Dominique Frank Tom
Devriese Piessens Schrijvers
.
T
UNIVERSITEIT
GENT

2/29

PARTIAL TYPE SIGNATURE

3/29

PARTIAL TYPE SIGNATURE

foo file=do ... 7 ...

3/29

PARTIAL TYPE SIGNATURE

foo file=do ... _ ...

3/29

PARTIAL TYPE SIGNATURE

foo file=do ... _ ...

Found hole
Relevant bindings include

> with type: ..

3/29

PARTIAL TYPE SIGNATURE

foo file=do ...

Found hole
Relevant bindings include

> with type: ..

3/29

PARTIAL TYPE SIGNATURE

foo :: FilePath — IO ?
foo file=do ...

Found hole
Relevant bindings include

> with type: ..

3/29

PARTIAL TYPE SIGNATURE

Joo :: FilePath — IO _
foo file=do ...

Found hole
Relevant bindings include

> with type: ..

3/29

PARTIAL TYPE SIGNATURE

Joo :: FilePath — IO _
foo file=do ...

In the type signature: foo :: FilePath -> IO _
To use the inferred type,

Found hole ‘_’ with type: ..

enable PartialTypeSignatures

3/29

OVERVIEW

Motivation
Syntax
Formalisation

Implementation

4/29

MOTIVATION

5/29

MOTIVATION

Dilemma: write the complete type signature or none at all?

6/29

MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

6/29

MOTIVATION

Dilemma: write the complete type signature or none at all?
Compromise: partial type signatures

= Mix annotated with inferred types using wildcards ().

Joo:: _ — (_,Bool) --Inferred: Bool — (Bool, Bool)
Joo x=(2,2)

6/29

MOTIVATION

Dilemma: write the complete type signature or none at all?
Compromise: partial type signatures

= Mix annotated with inferred types using wildcards ().

Joo:: _ — (_,Bool) --Inferred: Bool — (Bool, Bool)
Joo x=(2,2)

= Combine type checking with type inference.

6/29

MOTIVATION

7/29

MOTIVATION

During development:

» Functions & types change frequently

7/29

MOTIVATION

During development:
» Functions & types change frequently

» Type signatures need to be updated

7/29

MOTIVATION

During development:
» Functions & types change frequently
» Type signatures need to be updated

» Type signatures are omitted

7/29

MOTIVATION

During development:
» Functions & types change frequently
» Type signatures need to be updated
» Type signatures are omitted

» Documentation & type checking against signature lost

7/29

MOTIVATION

During development:
» Functions & types change frequently
» Type signatures need to be updated
» Type signatures are omitted
» Documentation & type checking against signature lost

= Partial type signatures

7/29

MOTIVATION

During development:
» Functions & types change frequently
» Type signatures need to be updated
» Type signatures are omitted
» Documentation & type checking against signature lost
= Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.

7/29

MOTIVATION

8/29

MOTIVATION

The complete type is not yet known.

8/29

MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

8/29

MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

bar:: _ — (Char,Int) — _

bar f(x,y)=- (fay)

8/29

MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

bar:: _ — (Char,Int) — _

bar f(x,y)=- (fay)

Found hole ‘_’ with type: Char -> Int -> Bool

In the type signature:

bar :: -> (Char, Int) -»>

8/29

MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

bar :: (Char — Int — Bool) — (Char,Int) — _

bar f(x,y)=- (fay)

Found hole ‘_’ with type: Char -> Int -> Bool

In the type signature:

bar :: -> (Char, Int) -»>

8/29

MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

bar :: (Char — Int — Bool) — (Char,Int) — _
bar f (@, y) =~ (fa y)

Found hole ‘_’ with type: Bool

In the type signature:

bar :: _ -> (Char, Int) -> _

8/29

MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

bar :: (Char — Int — Bool) — (Char, Int) — Bool
bar f(x,y)=— (f2 y)

Found hole ‘_’ with type: Bool

In the type signature:

bar :: _ -> (Char, Int) -> _

8/29

MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

bar :: (Char — Int — Bool) — (Char, Int) — Bool
bar f(x,y)=— (f2 y)

Emacs support for TypedHoles thanks to
Alejandro Serrano Mena’s GSocC project.

Relatively easy to add support for Partial TypeSignatures.

8/29

MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

{-# LANGUAGE Partial TypeSignatures #-}

bar:: _ — (Char,Int) — _
bar f(x,y)=- (fay)

No need to fill them in!

8/29

MOTIVATION

replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) =
PenaltyExtendedContextFreeRule phi rt v —

(Viz.phi iz — p [riz]) — (Viz.phi iz — p [rix]) > po

9/29

MOTIVATION

replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) =
PenaltyExtendedContextFreeRule phi rt v —
(Viz.phi iz — p [riz]) — (Viz.phi iz — p [rix]) > po

Distinguish important type information from distracting type
information

9/29

MOTIVATION

replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) =
PenaltyExtendedContextFreeRule phi rt v —
(Viz.phi iz — p [riz]) — (Viz.phi iz — p [rix]) > po

Distinguish important type information from distracting type
information

replaceLoopsRuleP :: _ =
PenaltyExtendedContextFreeRule phi rt v —
(Viz.phi iz — p [rix]) — Vie.phi iz — p [rix]) > po

9/29

MOTIVATION

Noninferable types, e.g. higher-rank types:

Joo x=(x [True,False],x [*a’,’b’])

test = foo reverse -- reverse ::Va.la] — |a]

10/29

MOTIVATION

Noninferable types, e.g. higher-rank types:
Jfoo :: (Va.la] — [a]) — ([Bool], |[Char])

Joo x=(x [True,False],x [*a’,’b’])

test = foo reverse -- reverse ::Va.la] — |a]

10/29

MOTIVATION

Noninferable types, e.g. higher-rank types:
Joo:: (Va.la] — |a]) — _

Joo x=(x [True,False],x [’a’,’b’])

test = foo reverse -- reverse ::Va.la] — |a]

10/29

SYNTAX

11/29

TypE WILDCARDS

SYNTAX

filter :: (a — Bool) — [a] — [a]
filter — []=[]
filter pred (x : as)

| pred x = filter pred xs

| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

filter :: (a —) — |a] — [a]

filter — [1=1]

filter pred (2 : as)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

filter :: (_ — Bool) — [a] — [a]

filter — [1=1]

Sfilter pred (x: xs)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

Sfilter :: — — [a] — [a]

filter — [1=1]

filter pred (2 : as)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

Sfilter :: — — [a] — []

filter — [1=1]

filter pred (2 : as)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

Silter :: — — [a] — _

filter — [1=1]

filter pred (2 : as)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

filter : ~ — —

filter — [1=1]

filter pred (2 : as)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

filter -~ —

filter — [1=1]

filter pred (2 : as)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

Sfilter ::

filter — [1=1]

filter pred (2 : as)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

TypE WILDCARDS

SYNTAX

filter — [1=1]

filter pred (2 : as)
| pred x = filter pred as
| otherwise= filter pred xs

12/29

NAMED WILDCARDS

SYNTAX

13/29

NAMED WILDCARDS

SYNTAX

filter :: (a — Bool) — [a] — [a]
filter — []=1]
Sfilter pred (x: xs)

| pred & = filter pred xs

| otherwise= filter pred as

13/29

NAMED WILDCARDS

SYNTAX

filter :: (v — x) — [2] = [2]

filter — []=]]

Sfilter pred (x: xs)
| pred & = filter pred xs
| otherwise= filter pred as

13/29

NAMED WILDCARDS

SYNTAX

Inferred: (Bool — Bool) — [Bool| — [Bool]

filter :: (v — x) — [2] = [2]

filter — []=]]

Sfilter pred (x: xs)
| pred & = filter pred xs
| otherwise= filter pred as

13/29

NAMED WILDCARDS

SYNTAX

filter :: (_x — Bool) — [x| — []

filter — []=]]

Sfilter pred (x: xs)
| pred & = filter pred xs
| otherwise= filter pred as

13/29

NAMED WILDCARDS

SYNTAX

Inferred: (w_x — Bool) — [w_x| — [w_x]

filter :: (_x — Bool) — [x| — []

filter — []=]]

Sfilter pred (x: xs)
| pred & = filter pred xs
| otherwise= filter pred as

13/29

NAMED WILDCARDS

SYNTAX

eq:: Eqa= a— a— Bool
eQqry=cr=y

14/29

NAMED WILDCARDS

SYNTAX

eq::Eq x= x— 2 — Bool

eqry=r=y

14/29

NAMED WILDCARDS

SYNTAX

Inferred: Eq w_x = w_x — w_x — Bool

eq::Eq x= x— 2 — Bool

eqry=r=y

14/29

NAMED WILDCARDS

SYNTAX

eq:Eq v»= xv— x— «x

eqry=r=y

14/29

NAMED WILDCARDS

SYNTAX

Inferred: Eq Bool = Bool — Bool — Bool

eq:Eq v»= xv— x— «x

eqqay=r=y

14/29

NAMED WILDCARDS

SYNTAX

Inferred: Bool — Bool — Bool

eq:Eq v»= xv— x— «x

eqqay=r=y

14/29

CONSTRAINT WILDCARDS

SYNTAX

15/29

CONSTRAINT WILDCARDS

SYNTAX

bar::Ord a = a — a — Bool
barxy=x=y
-- class Eq a => Ord x

15/29

CONSTRAINT WILDCARDS

SYNTAX

bar:: Ord _ = a — a — Bool

barxy=ax=y
-- class Eq a => Ord x

15/29

CONSTRAINT WILDCARDS

SYNTAX

Mismatch: inferred Eq a vs. annotated Ord _

bar:: Ord = a — a — Bool

barxy=x=y
-- class Eq a => Ord x

15/29

CONSTRAINT WILDCARDS

SYNTAX

16/29

CONSTRAINT WILDCARDS

SYNTAX

Joo :: (Show a, Num a) = a — String
Joo x=show (x+1)

16/29

CONSTRAINT WILDCARDS

SYNTAX

foo:: a= a— String

Jfoo x=show (x+1)

16/29

CONSTRAINT WILDCARDS

SYNTAX

Infer? Show a = a — String

foo:: a= a— String

Jfoo x=show (x+1)

16/29

CONSTRAINT WILDCARDS

SYNTAX

Infer? Num a = a — String

foo:: a= a— String

Jfoo x=show (x+1)

16/29

CONSTRAINT WILDCARDS

SYNTAX

Compromise
» Only named wildcards in constraints...

» ...when present in the rest of the type

17/29

CONSTRAINT WILDCARDS

SYNTAX

Compromise
» Only named wildcards in constraints...

» ...when present in the rest of the type

Eq = a— a— Bool No

17/29

CONSTRAINT WILDCARDS

SYNTAX

Compromise
» Only named wildcards in constraints...

» ...when present in the rest of the type

Eq = a— a— Bool No
Eq v = a— a— Bool No

17/29

CONSTRAINT WILDCARDS

SYNTAX

Compromise
» Only named wildcards in constraints...

» ...when present in the rest of the type

Eq = a— a— Bool No
Eq v = a— a— Bool No
Eq 2= 2o — _x— Bool Yes

17/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

18/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

Joo :: (Show a, Num a) = a — String
Joo x=show (x+1)

18/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

foo:: = a— String

Jfoo x=show (x+1)

18/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

Inferred constraints: (Show a, Num a)

foo:: = a— String

Jfoo x=show (x+1)

18/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

foo:: (Num a,) = a — String

Jfoo x=show (x+1)

18/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

Inferred constraints: Show a

foo:: (Num a,) = a — String

Jfoo x=show (x+1)

18/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

19/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

bar :: Showa = a — a
bar x =show x

19/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

bar:: = a— a

bar x =show x

19/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

Inferred constraints: Show a
Inferred: Show a = a — a

bar:: = a— a

bar x =show x

19/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

bar:: (Numa,)= a—a

bar x =show x

19/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

Inferred constraints: Show a
Inferred: (Num a,Show a) = a — a

bar:: (Numa,)= a—a

bar x =show x

19/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

Inferred constraints: Show a
Inferred: (Num a,Show a) = a — a

bar:: (Numa,)= a—a

bar x =show x

Proposed simplification:
ignore annotated constraints

19/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

Inferred constraints: Show a
Inferred: (Nwma,Show a) = a — a

bar:: (Numa,)= a—a

bar x =show x

Proposed simplification:
ignore annotated constraints

19/29

EXTRA-CONSTRAINTS WILDCARD

SYNTAX

Inferred constraints: Show a
Inferred: Show a = a — a

bar:: (Numa,)= a—a

bar x =show x

Proposed simplification:
ignore annotated constraints

19/29

FORMALISATION

Partial Type Signatures for Haskell.
Thomas Winant, Dominique Devriese,

Frank Piessens, Tom Schrijvers.
In Practical Aspects of Declarative Languages 2014
(PADL14)

20/29

IDEA

FORMALISATION

21/29

IDEA

FORMALISATION

secondArg :: _ — _ — Bool

secondArg _x=x

21/29

IDEA

FORMALISATION

secondArg _x=x

21/29

IDEA

FORMALISATION

8 type

N ——

secondArg x ta— =y
«@ B 0%

21/29

IDEA

FORMALISATION

8 type

A —_—l
secondArg = a— =y
v\/ v
«@ B 0%

~ (B ~7)
——

Constraints

21/29

IDEA

FORMALISATION

8 type
secondArg = a— =y
NGOG
«@ B 0%
~ (B~7)
——

Constraints

Solve the constraints: [y +— (]

21/29

IDEA

FORMALISATION

8 type
—_——l~—
secondArg -2 a— B—=y
v\/ \,/
a B Y

~ (B ~7)
——

Constraints

Solve the constraints: [y — (3]
= secondArg::a — [—

21/29

IDEA

FORMALISATION

8 type
A —_—l
secondArg = a— =y
v\/ v
«@ B ol

~ (B ~1)
——
Constraints
Solve the constraints: [y +— (]
= secondArg::a — [—
= Generalise: secondArg::Va b.a — b — b

21/29

IDEA

FORMALISATION

secondArg :: _ — _ — Bool

8 type
secondArg = a— =y
NGOG
«@ B ol
~ (B~7)
——

Constraints

Solve the constraints: [y +— (]
= secondArg::a — [—
= Generalise: secondArg::Va b.a — b — b

21/29

IDEA

FORMALISATION

secondArg :: _ — _ — Bool

8 type
secondArg = a— =y
NGOG
«@ B 0%
~ (B~7)
——

Constraints

Solve the constraints: [y +— (]
= secondArg::a — [—
= Generalise: secondArg::Va b.a — b — b

Idea: replace wildcards with unification variables

21/29

IDEA

FORMALISATION

secondArg :: _ — _ — Bool

8 type
secondArg = a— =y
NGOG
«@ B 0%
~ (B~7)
——

Constraints

Solve the constraints: [y +— (]
= secondArg::a — [—
= Generalise: secondArg::Va b.a — b — b

Idea: replace wildcards with unification variables
Wildcard desugaring relation:
(- — — — Bool) = (w1 — way — Bool)

21/29

IDEA

FORMALISATION

secondArg :: _ — _ — Bool

8 type
A —_—l
secondArg = a— =y
v\/ v
«@ B 0%

W(BN’y’(Wl%WQ%BOOZ)N(Q—)BHW))

Constraints

Solve the constraints: [y +— (]
= secondArg::a — [—
= Generalise: secondArg::Va b.a — b — b

Idea: replace wildcards with unification variables
Wildcard desugaring relation:
(- — — — Bool) = (w1 — way — Bool)

21/29

IDEA

FORMALISATION

secondArg :: _ — _ — Bool

8 type
A —_—l
secondArg = a— =y
v\/ v
«@ B 0%

W(BN’%(Wl%WQ%BOOZ)N(Q—)BHW))

Constraints

Solve the constraints:
[y — Bool, B — Bool,wy — Bool, o — w1]

Idea: replace wildcards with unification variables
Wildcard desugaring relation:
(- — — — Bool) = (w1 — way — Bool)

21/29

IDEA

FORMALISATION

secondArg :: _ — _ — Bool

8 type
A —_—l
secondArg = a— =y
v\/ v
«@ B 0%

W(BN’%(Wl%WQ%BOOZ)N(Q—)BHW))

Constraints

Solve the constraints:
[y — Bool, B — Bool,wy — Bool, o — w1]
= secondArg :: w1 — Bool — Bool

Idea: replace wildcards with unification variables
Wildcard desugaring relation:
(- — — — Bool) = (w1 — way — Bool)

21/29

IDEA

FORMALISATION

secondArg :: _ — _ — Bool

8 type
A —_—l
secondArg = a— =y
v\/ v
«@ B 0%

W(BN’%(Wl%WQ%BOOZ)N(Q—)BHW))

Constraints

Solve the constraints:

[y — Bool, B — Bool,wy — Bool, o — w1]

= secondArg :: w1 — Bool — Bool

= Generalise: secondArg :: Ya.a — Bool — Bool

Idea: replace wildcards with unification variables
Wildcard desugaring relation:
(- — — — Bool) = (w1 — way — Bool)

21/29

PROOFS

FORMALISATION

Theorem 1: Conservative extension
For functions with non-partial type signatures, GHC
infers the same types as before.

22/29

PROOFS

FORMALISATION

Theorem 1: Conservative extension
For functions with non-partial type signatures, GHC
infers the same types as before.

Theorem 2: Generalisation of type inference
S = _=eisequivalent with f=e.

22/29

PROOFS

FORMALISATION

Theorem 1: Conservative extension
For functions with non-partial type signatures, GHC
infers the same types as before.

Theorem 2: Generalisation of type inference
S = _=eisequivalent with f=e.

Theorem 3: Algorithm soundness

22/29

IMPLEMENTATION

23/29

IMPLEMENTATION

» Parser support for wildcards

24/29

IMPLEMENTATION

» Parser support for wildcards

» Named wildcard syntax clashes with type variable syntax:

foo:: _a— _a
foox=—x

24/29

IMPLEMENTATION

» Parser support for wildcards

» Named wildcard syntax clashes with type variable syntax:

foo:: _a— _a
foox=—x

Couldn’t match expected type ‘_a’
with actual type ‘Bool’
‘_a’ is a rigid type variable bound by ...

24/29

IMPLEMENTATION

» Parser support for wildcards

» Named wildcard syntax clashes with type variable syntax:

{-# LANGUAGE NamedWildcards #-}

foo:: _a— _a
foox=—x

Couldn’t match expected type ‘_a’
with actual type ‘Bool’
‘_a’ is a rigid type variable bound by ...

backwards compatible unless the NamedWildcards extension
is enabled.

24/29

IMPLEMENTATION

» Parser support for wildcards

» Named wildcard syntax clashes with type variable syntax:

{-# LANGUAGE NamedWildcards #-}

foo:: _a— _a
foox=—x

Found hole ‘_’ with type: Bool
In the type signature:
foo :: _a -> _a

backwards compatible unless the NamedWildcards extension
is enabled.

24/29

IMPLEMENTATION

» Disallow wildcards in particular types:

class Show a where

show ::a — _
instance Show _ where ...
data Foo = {bar :: Maybe _}

25/29

IMPLEMENTATION

» Quantify desugared wildcards per TypeSig, imitating the
scoping behaviour of ScopedTypeVariables.

26/29

IMPLEMENTATION

» Quantify desugared wildcards per TypeSig, imitating the
scoping behaviour of ScopedTypeVariables.

{-# LANGUAGE NamedWildcards #-}
foo:: _a — Char
foox=letv=-2

g:_a— _a
8Y=Y
in(gz")

26/29

IMPLEMENTATION

» Quantify desugared wildcards per TypeSig, imitating the
scoping behaviour of ScopedTypeVariables.

{-# LANGUAGE NamedWildcards, ScopedTypeVariables #-}

foo:: _a — Char

foox=letv=-2
gu_a— _a

8Y=Y

in (g’z’)

Couldn’t match expected type fBool’
with actual type ‘Char’
In the first argument of ‘g’, namely ‘’z’’

26/29

IMPLEMENTATION

» Just like for TypedHoles, when type checking, we
generate an insoluble hole constraint between each
wildcard unification variable and its inferred type.

27/29

IMPLEMENTATION

» Just like for TypedHoles, when type checking, we
generate an insoluble hole constraint between each
wildcard unification variable and its inferred type.

» After solving the constraints, these hole constraints are
left over, and are converted into error messages.

27/29

IMPLEMENTATION

» Just like for TypedHoles, when type checking, we
generate an insoluble hole constraint between each
wildcard unification variable and its inferred type.

» After solving the constraints, these hole constraints are
left over, and are converted into error messages.

» They are not generated when PartialTypeSignatures
is enabled.

27/29

CODE

IMPLEMENTATION

Code https://github.com/mrBliss/ghc
Phabricator https://phabricator.haskell.org/D168
Trac Ticket #9478

Coming to GHC some time soon!

28/29

https://github.com/mrBliss/ghc
https://phabricator.haskell.org/D168

THANK YOU

Q& A

29/29

