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PARTIAL TYPE SIGNATURE

Joo :: FilePath — IO _
foo file=do ...

In the type signature: foo :: FilePath -> IO _
To use the inferred type,

Found hole ‘_’ with type: ..

enable PartialTypeSignatures
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MOTIVATION

Dilemma: write the complete type signature or none at all?
Compromise: partial type signatures

= Mix annotated with inferred types using wildcards ().

Joo:: _ — (_,Bool) --Inferred: Bool — (Bool, Bool)
Joo x=(2,2)

= Combine type checking with type inference.
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MOTIVATION

During development:
» Functions & types change frequently
» Type signatures need to be updated
» Type signatures are omitted
» Documentation & type checking against signature lost
= Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.
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The complete type is not yet known.
= Agda-style hole-driven development

bar :: (Char — Int — Bool) — (Char,Int) — _
bar f (@, y) =~ (fa y)

Found hole ‘_’ with type: Bool
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The complete type is not yet known.
= Agda-style hole-driven development
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MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

bar :: (Char — Int — Bool) — (Char, Int) — Bool
bar f(x,y)=— (f2 y)

Emacs support for TypedHoles thanks to
Alejandro Serrano Mena’s GSocC project.

Relatively easy to add support for Partial TypeSignatures.
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MOTIVATION

The complete type is not yet known.
= Agda-style hole-driven development

{-# LANGUAGE Partial TypeSignatures #-}

bar:: _ — (Char,Int) — _
bar f(x,y)=- (fay)

No need to fill them in!
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replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) =
PenaltyExtendedContextFreeRule phi rt v —

(Viz.phi iz — p [riz]) — (Viz.phi iz — p [rix]) > po

9/29



MOTIVATION

replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) =
PenaltyExtendedContextFreeRule phi rt v —
(Viz.phi iz — p [riz]) — (Viz.phi iz — p [rix]) > po

Distinguish important type information from distracting type
information

9/29



MOTIVATION

replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) =
PenaltyExtendedContextFreeRule phi rt v —
(Viz.phi iz — p [riz]) — (Viz.phi iz — p [rix]) > po

Distinguish important type information from distracting type
information

replaceLoopsRuleP :: _ =
PenaltyExtendedContextFreeRule phi rt v —
(Viz.phi iz — p [rix]) — Vie.phi iz — p [rix]) > po

9/29



MOTIVATION

Noninferable types, e.g. higher-rank types:

Joo x=(x [True,False],x [*a’,’b’])

test = foo reverse -- reverse ::Va.la] — |a]

10/29



MOTIVATION

Noninferable types, e.g. higher-rank types:
Jfoo :: (Va.la] — [a]) — ([Bool], |[Char])

Joo x=(x [True,False],x [*a’,’b’])

test = foo reverse -- reverse ::Va.la] — |a]

10/29



MOTIVATION

Noninferable types, e.g. higher-rank types:
Joo:: (Va.la] — |a]) — _

Joo x=(x [True,False],x [’a’,’b’])

test = foo reverse -- reverse ::Va.la] — |a]
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SYNTAX
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filter — []=[]
filter pred (x : as)

| pred x = filter pred xs

| otherwise=  filter pred xs
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» ...when present in the rest of the type
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FORMALISATION

Partial Type Signatures for Haskell.
Thomas Winant, Dominique Devriese,

Frank Piessens, Tom Schrijvers.
In Practical Aspects of Declarative Languages 2014
(PADL14)
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FORMALISATION

Theorem 1: Conservative extension
For functions with non-partial type signatures, GHC
infers the same types as before.

Theorem 2: Generalisation of type inference
S = _=eisequivalent with f=e.

Theorem 3: Algorithm soundness
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IMPLEMENTATION

» Parser support for wildcards

» Named wildcard syntax clashes with type variable syntax:

{-# LANGUAGE NamedWildcards #-}

foo:: _a— _a
foox=—x

Found hole ‘_’ with type: Bool
In the type signature:
foo :: _a -> _a

backwards compatible unless the NamedWildcards extension
is enabled.

24/29



IMPLEMENTATION

» Disallow wildcards in particular types:

class Show a where

show ::a — _
instance Show _ where ...
data Foo = {bar :: Maybe _}
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IMPLEMENTATION

» Quantify desugared wildcards per TypeSig, imitating the
scoping behaviour of ScopedTypeVariables.

{-# LANGUAGE NamedWildcards, ScopedTypeVariables #-}

foo:: _a — Char

foox=letv=-2
gu_a— _a

8Y=Y

in (g’z’)

Couldn’t match expected type fBool’
with actual type ‘Char’
In the first argument of ‘g’, namely ‘’z’’
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IMPLEMENTATION

» Just like for TypedHoles, when type checking, we
generate an insoluble hole constraint between each
wildcard unification variable and its inferred type.

» After solving the constraints, these hole constraints are
left over, and are converted into error messages.

» They are not generated when PartialTypeSignatures
is enabled.
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CODE

IMPLEMENTATION

Code https://github.com/mrBliss/ghc
Phabricator https://phabricator.haskell.org/D168
Trac Ticket #9478

Coming to GHC some time soon!
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https://github.com/mrBliss/ghc
https://phabricator.haskell.org/D168

THANK YOU

Q& A
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