Yhc: The York Haskell Compiler

By
Tom Shackell

What?

* Yhc 1s a rewrite of the back end of the nhc98
system.

* The back-end of the compiler 1s replaced.
* The runtime system 1s replaced.
* The instruction set 1s different.

* The Prelude 1s heavily modified.

Why?

e [t was written to address some 1ssues with the
nhc98 back end.

* In particular: The high bit problem.

* Also as an experiment: Can we make nhc98
more portable?

The High Bit Problem

Graph Reduction

* Lazy functional languages are usually
implemented using graph reduction.

* Haskell expressions are represented by graphs.
sum :: [Int] -> Int

sum [] = 0
sum (x:xs) = X + sum XS

* The expression 'sum [1,2]' might be represented
by the graph:

sum | |

Sum

Reduction

Reduction

Reduction

Reduction

IND > 3

Heap Node

We can see there are 4 types of graph node

Constructor : Thunk sum

Blackholed Thunk w Indirection RN

In nhc and Yhc these graph nodes are represented
with 4 types of heap node

Heap Nodes 1n nhc

sum
Constructor Constructor Information 10
Thunk 0 Function Information Pointer 1
Blackholed Thunk Function Information Pointer

Indirection Redirection Pointer M

The “High Bit” problem

* nhc assumes that 1t can use the topmost bit of a pointer to store information.

* This 1s not always the case: many modern Linux-x86 kernels allocate
memory 1n addresses too high to fit in 3 1bits.

Constructor Constructor Information 10
Thunk Function Information Pointer 1
Blackholed Thunk Function Information Pointer

Indirection Redirection Pointer M

Heap Nodes in Yhe

* Yhc makes sure that all FInfo structures are 4 byte aligned. Freeing up a bit
at the bottom for Thunk nodes.

* [t also represents constructors by using a pointer to the information about
the constructor, rather than encoding the information into the heap word.

Constructor Constructor Information Pointer 01
Thunk Function Information Pointer 01
Blackholed Thunk Function Information Pointer

Indirection Redirection Pointer

Instruction Sets

* The 1nstruction set for Yhc 1s much simpler than
for nhc.

e Both are based on stack machines.

* However, nhc has instructions for directly
manipulating both the heap and the stack.

* Where as Yhc only directly manipulates the
stack.

Instructions

main :: IO ()
main = putStrLn (show 42)

nhc instructions Yhc instructions
main () : main () :

HEAP_CVAL show PUSH_INT 47
HEAP INT 42 MK AP show
PUSH_HEAP MK_AP putStrLn
HEAP_CVAL putStrLn RETURN_EVAL
HEAP OFF -3

RETURN_EVAL

nhc instructions

main () :
HEAP CVAL show
HEAP INT 42
PUSH HEAP
HEAP CVAL putStrLn
HEAP OFF -3
RETURN EVAL

Heap

Stack

Constants

nhc instructions

main () :
HEAP CVAL show
HEAP INT 42
PUSH HEAP
HEAP CVAL putStrLn
HEAP OFF -3
RETURN EVAL

show

Heap

Stack

Constants

nhc instructions

main () :
HEAP CVAL show
HEAP INT 42
PUSH HEAP
HEAP CVAL putStrLn
HEAP OFF -3
RETURN EVAL

Heap

show

Stack

42 <

Constants

nhc instructions

main () :
HEAP CVAL show
HEAP INT 42
PUSH HEAP
HEAP CVAL putStrLn
HEAP OFF -3
RETURN EVAL

Heap

show

Stack

—_—

42 <

Constants

nhc instructions

main () :
HEAP CVAL show
HEAP INT 42
PUSH HEAP
HEAP CVAL putStrLn
HEAP OFF -3
RETURN EVAL

Stack

Heap
show putStrLn
Constants
42 <-—

—_—

nhc instructions

main () :
HEAP CVAL show Heap
HEAP INT 42
PUSH HEAP
HEAP CVAL putStrLn / Y
HEAP_OFEF =3 show putStrLn
RETURN EVAL

Stack Constants

nhc instructions

main () :
HEAP CVAL show Heap
HEAP INT 42
PUSH HEAP
HEAP CVAL putStrLn v \
RETURN EVAL

Stack

Constants

Y hc instructions

main () :
PUSH INT 42
MK AP show

MK AP putStrLn
RETURN EVAL

Stack

Heap

Y hc instructions

main () :
PUSH INT 42
MK AP show

MK AP putStrLn
RETURN EVAL

Stack

Heap

—

42

Yhc 1nstructions Heap

main () :
PUSH INT 42
MK AP show

MK AP putStrLn
RETURN EVAL

Stack
—» show |

i

42

Yhc 1nstructions Heap

main () :
PUSH INT 42
MK AP show

MK AP putStrLn
RETURN EVAL

> putStrLn | |

.

Stack
show |

i

42

Y hc 1nstructions

main () :
PUSH INT 42
MK AP show

MK AP putStrLn
RETURN EVAL

Stack

Heap

show

—

42

Comparison

* Yhc uses less instructions to do the same thing.

* Because 1t doesn't have to have explicit
movements between heap and stack.

e .. and because 1t can reference other nodes
implicitly rather than using explicit heap offsets.

* Yhc instructions are also smaller
R . , C e e
ecause 1t has more 'specializations
* ... and again, because heap references are implicit

* These two factors make Yhc about 20% faster
than nhc

Improving Portability

Bytecode 1n nhc

* nhc compiles Haskell functions into a bytecode

for an abstract machine that manipulates graphs:
The G-Machine.

* The bytecode 1s placed 1n a C source file, using
an array of bytes. The C source file 1s then

compiled and linked with the nhc interpreter to
form an executable.

unsigned char[] FN Prelude 46sum = {
NEEDHEAP 132, HEAP CVAL I3, HEAP ARG, 1, HEAP CVAL 14,
HEAP ARG, 1, HEAP CVAL I5, HEAP OFF N1, 3, HEAP CADR N1, 1,

PUSH HEAP, HEAP CVAL P1, 6, HEAP OFF N1, 8, HEAP OFF N1, 5,
RETURN, ENDCODE

Portable?

* The C code 1s portable, 1sn't 1t?
* Yes, but:
* [t creates a dependency on a C compiler.

e There are 1ssues with the nuances of various C
compilers.

* The bytecode can't be loaded dynamically.

Improved Portability.

* Yhc also compiles Haskell functions into bytecode
instructions for a G-Machine.

* However, Y]
file which 1s t

e places the bytecodes 1n a separate
nen loaded by the interpretter at

runtime. Simi

ar to Java's classfile system.

* More portable, but 1t means Yhc has to do its own

linking.

More Portable Still?

* Can we extend portabi
over a network?

lity to include portability

e Then we could take a closure on one machine

and have 1t run on anot|

her machine.

* Not implemented yet, |

but some 1nteresting i1deas.

Computer A

calc

—» data

Computer B

Computer A

calc

—» data

calc

> data

Computer B

Computer A

calc

> data

calc

data

Computer B

Computer A

Computer B

calc

data

Computer A

Computer B

calc

—» data

Computer A

Computer B

e

Computer A

Computer B

e

Need calc

Computer A

Need calc

Computer B

e

Computer A

Need calc

Computer B

e

Computer A

Need calc

calc
calc(x) :
PUSH ARG x
PUSH CONST subcalc
MK AP iter
RETURN_EVAL

Computer B

e

Computer A

calc

calc(x) :
PUSH ARG x
PUSH CONST subcalc
MK AP iter
RETURN_ EVAL

Computer B

-

Computer A

Computer B

e -

calc

calc(x):
PUSH ARG x

PUSH CONST subcalc

MK_AP iter
RETURN EVAL

Computer A

Computer B

B -

calc

calc(x):
PUSH ARG x
PUSH CONST subcalc
MK AP iter
RETURN_ EVAL

Computer A

Computer B

e -

- A

iter |
subcalc
calc
calc (x) :
PUSH ARG x

PUSH CONST subcalc
MK AP iter
RETURN EVAL

Computer A Computer B

- A

iter

m data
4

iter
\ J

subcalc

Computer A

Need iter

Computer B

- A

iter

m data
4

iter
\ J

subcalc

Computer A

And so on ...

Computer B

- A

iter

m data
4

iter
\ J

subcalc

Computer A

Computer B

42

Computer A

Computer B

Result

Computer A

Result

Computer B

Computer A

Result

Computer B

Computer A

Result

Computer B

Computer A

calc

> data

Result

Computer B

Computer A

Result

Computer B

Challenges

* Needs concurrency to be useful.
* Complicates Garbage collection.
* Level of granularity versus laziness.

® Possible architecture differences.

Other Things!
* Other people have written various interpretters and
backends for Yhc bytecode: Java, Python, .NET

e .. and various related tools such as interactive
interpretters.

* ['m also using Yhc to do my Hat G-Machine work.

Questions?

