PENHAGEN

DEPARTMENT OF MPUTER

Faculty of Science o

Runtime-Supported Serialisation in Haskell - an API

Jost Berthold

berthold@diku.dk
Department of Computer Science

Haskell Implementors' Workshop, September 2013, Boston
Slide 1/29

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Some Haskell users have interesting questions . ..

M
=] stackoverflow

Stack Overflow is a question and answer site for professional and enthusiast programmers. It's 100% free, no
registration required.

Can Haskell functions be serialized?

. The best way to do it would be to get the representation of the function (if it can be recovered tagged

13 somehow). Binary serialization is preferred for efficiency reasons. haskell * 12403

w | think there is a way to do it in Clean, it would be imp to imp iTask, which relies on serialization ~

that tasks (and so functions) can be saved and continued when the server is running again. _
deserialization | * 16

2 This must be important for distributed haskell computations.
asked 1 month ago

I'm not looking for parsing haskell code at runtime as described here: Serialization of functions in viewed 446 times
Haskell. | also need to serialize not just deserialize. active 1 month age

Can Haskell functions be serialized? . ..
... This must be important for distributed haskell computations.

J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston .
Slide 3/29

UNIVERSITY OF COPENHAGEN

Some Haskell users have interesting questions . ..

haskell-cafe

The Mail Archive WE
L

4= Thread =g 4= Date & | H Search |

7
Re: [Haskell-cafe] Re: persist and retrieve of I0 type?
Svein Ove Aas
Sat, 10 Apr 201C 106 -0708 N

On Sat, Apr 10, 2010 at 11:19 AM, Jon Fairbairn
<jon.fairba. ..gcl.can.ac.uk> wrote:

> It sounds more like he wants two functions something like
>

> save:: FilePath -> [10 ()] -> 10 ()

> restore:: FilePath -» I0 [I0 ()]

>

> to which the ansver would be no. s
>
It's an insoluble problem in general - the parameters baked inte the

thunk may be infinite, or at least too large to persist, and the
functions mav not be around if vou try to load the persisted data into

... two functions something like
save:: FilePath -> [I0 ()] -> I00)
restore:: FilePath -> I0 [I0 ()]

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston
Slide 2/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Some Haskell users have interesting questions . ..
haskell-cafe The Mail Archive \&

&

4= Thread =9 = Date =9 ‘ H Search |

Re: [Haskell-cafe] Re: How to serialize thunks?
Krasimir Angelov
Thu, 21 Dec 2006 02:57:53 -0800 %
on 12/21/06, Joachim Durchholz <> wrote:
Krasimir angelov schrieb:
> All those libraries really force the data because they all are written
= in Haskell. If you want to serialize thunks then you will need some
> support from RTS.
Good to hear that my conjectures aren't too far from reality.
Does any Haskell implementation have that kind of RTS support?

Mot vet. I ever don't know of anvone planning to do that.

All those libraries really force the data ...
... to serialize thunks [..] you will need some support from RTS ...

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston ’
Slide 4/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Support for serialisation

e Converting a data structure into a form which can be externally
stored and later retrieved.

e Focus can be:

e language interoperability (e.g. XML, JSON) (not addressed today)
e easy and efficient load/store for applications, persistence
e communication in a distributed application

e Standard Answers given for Haskell:

® Read and show provide serialisation.
e The Binary package is faster and more elegant.

e Not a good match for Haskell:
Not purely functional. How to treat functions?
Undesired strictness. How to serialise thunks?

J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston
Slide 5/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Serialisation in a parallel Haskell runtime (Eden)

Parallel Haskell dialect Eden:

let multproc = process (\n -> [n,2*n..])
result = multproc # 5 5,10,15,20, ...
in zipWith f result [1..limit]

o Parallel Processes, applying a
function to one argument

e Hyperstrict in argument and

DEPARTMENT OF COMPUTER SCIENCE

[oazent |———{ mitpeed

result

Typed communication channels between processes (no sharing)
e Stream communication for lists
e Concurrency for tuples
e Same mechanism for process instantiation (IO-monadic internally)
Runtime support orthogonal to evaluation.

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston .

Slide 7/29

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE
Another route to serialisation support

o Use parallel Haskell runtime system support for data transfer
e Separable from other aspects of parallelism support [Berl1].
e Problems: No safety net, not even types.

e This talk:
e Presents basic technique and limitations

e Makes proposals for an extended and more robust API
o Briefly outlines applications

@ Motivation and Background

@ Runtime-Supported Serialisation for Haskell
Parallel Haskell Runtime Support
Access to serialisation from Haskell
Possible errors and exceptions

© Applications
O Status

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston
Slide 6/29

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Serialisation in a parallel Haskell runtime (GUM) uw-os

Glasgow Parallel Haskell

let resultl = map (*5) [1..limit]
‘using‘ seqlist rnf

result2 = ...
in resultl ‘par‘ result2 ‘seq‘ ...

GIT GIT

GALL | AGA2T
GA12 GA2.2

GA2T
GA2.2

e Sparks: Subexpressions
for parallel evaluation

I Thunk (computation) [Z1 Fetchme (global indirection) [Normal Form (data)
e Fishing: requesting
sparks from other nodes

Exporting sparks (thunks) to other nodes

e relocates unevaluated thunks (avoids work duplication),
but duplicates evaluated data (avoids overhead),

e allows to fetch results through global addresses

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston .
Slide 8/29

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Runtime Support for Serialisation (“Packing”)

e Haskell data is graph of closures in the heap

e Breadth-first traversal, packing header data and non-pointers

CLO| hdr | d1, d2 CLO‘ hdr | d1, d2

1:graphroot 5:closure 2

CLO

hdr CLOH hdr |d1, da, d3

9:closure 3 11:closure 4

REF‘ 5 CLOIhdr

dy, dp, d3 REF” 11

" ref: 2 18:closure 5 ref: 4

e Back references for closures already packed
e Cannot touch mutable structures (MVar, TVar, IORef).
e Contains code pointers, can only be deserialised by same binary.

J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston .
Slide 9/29

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Access to serialisation from Haskell
Access to packing routine by primitive operations

Primitive Operations (2010 version)

serialize# :: a -> State# s -> (# State# s, ByteArray# #)
deserialize# :: ByteArray# -> State# s -> (# State# s, a #)

Haskell heap structure representing the a is serialised
e ...into a byte array (itself allocated in the Haskell heap).
e Deserialisation constructs (a copy of) the serialised structure.

e Serialisation operations monadic (state# for sequencing).
deserialize conceptually pure, but certainly used in monadic context

(Too) Simple 10 Monad Wrapper

serialize0 :: a -> I0 (UArray Int Word)
deserializeO :: UArray Int Word -> I0 a

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston
Slide 10/29

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Trust me, | know what I'm doing. ..

let myNums = [1..10] -- :: [Integer]
blob <- serializeO myNums
Type defaults can be unlucky. ..
copy <- deserialize0 blob
let num = length copy + head copy

-- copy :: [Int]

Phantoms to the rescuel!

Typed Serialisation Data (a “packet”)

data Serialized a = Serialized { packetData :: ByteArray# }

serialize :: a -> I0 (Serialized a)
deserialize :: Serialized a -> I0 a

No tampering with the serialised type.
But if we want to persist values?

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston .
Slide 11/29

Enabling persistence — adding additional information

Persistence — externalising data to retain across program runs

e Reading and writing serialised data externally

Instances of serializeda for 10

instance Typeable a => Show (Serialized a) -- adds type fingerprint

where ... -- writing ascii format - and executable hash
instance Typeable a => Read (Serialized a) -- checks type fingerprint

where ... -- parsing ascii format -- read . show == id - and
instance Typeable a => Binary (Serialized a)

where ... -- as above..., uses type fingerprint and executable hash

e Save type when writing (in show instance and put)
e Check type when reading back in (in read instance and get)

e Typeable restricts the approach to monomorphic types.

Also: includes a fingerprint of executable

e ensuring that only the same executable can safely decode. @

J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston .
Slide 12/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

What can possibly go wrong?

hdl <- openFile "/etc/passwd" ReadMode Some types just do not make
blob <- serialize hdl , sense to serialise. . .
-- must fail! i A
... especially those representing:
impurity, state, location, effects.

hClose hdl

hdl’ <- deserialize blob -- 777

Want operational safety and reliable behaviour

e Generate exceptions for prohibited
. txt <- readFile "/etc/passwd"
and internal types

e no mutable types pﬁéétan (head (lines txt))
(MVar, IORef, TVar)

® no system types
(thread id, RTS internal data)

Problematic with lazy 10 operations!

blob <- serialize txt
-- might fail! :-(

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston
Slide 13/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Concurrent evaluation and serialisation

What if serialisation finds a blackhole?!

Two choices:

® Behave as an evaluator:
Block serialising thread on
blackhole, retry when evaluated.

let bigStuff = f input

buddy <- forkIO (compute bigStuff)

® Behave as an observer:
Indicate blocking by an
exception to the caller.

blob <-trySerialize bigStuff

e Pro blocking: clear semantics, no leakage

e Pro observing: can have useful applications (clearly not pure ones)

1
Blackhole: synchronisation node in the heap, representing data currently under evaluation
J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston
Slide 14/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

... and there are more ways to go wrong!

Size of the serialised data should be restricted

e can produce large arrays (not
under programmer’s control)

let size = 1076 :: Integer

big = listArray (0,size) [0 .. size]

bigger = amap (*2) big

reallyBig = amap (*3) bigger
print $ reallyBig!O -- forces arrays

-- but leaves elements unevaluated
blob <- serialize reallyBig
-- 3 x 1M thunks

e Packet size should be limited
(considerably less than heap)

Implementation uses fixed
internal buffers

let bin = encode blob-- use Binary instance

bin’

copy <- deserialize (decode bin’)
-- must check format!
® deserialize# can fail in the

runtime system @

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston .
Slide 15/29

DEPARTMENT OF COMPUTER SCIENCE

tamperWith bin -- have some fun (Code must handle corrupted data

e Binary decode can fail in Haskell

UNIVERSITY OF COPENHAGEN

Summary: Possible Exceptions related to Packing

Pack Exceptions

instance Exception PackException
data PackException = P_SUCCESS -- never used

...occurring inside the runtime system

—-- found data under evaluation (trySerialize only)
| P_NOBUFFER -- buffer too small (size configurable)

| P_CANNOT_PACK -- prohibited type found

| P_UNSUPPORTED | P_IMPOSSIBLE -- unsupported/impossible type found
| P_GARBLED -- garbled data (deserialize only)

| P_BLACKHOLE

...occurring inside Haskell (Read or Binary instances)

| P_ParseError -- error while reading in serialised data
| P_BinaryMismatch -- serialised by a different executable
| P_TypeMismatch -- unexpected data type

deriving (Eq, Ord, Typeable)

J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston .
Slide 16/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Refined serialisation support in the runtime
Primitive operations returning RTS error codes

Primitive Operations with error codes

DEPARTMENT OF COMPUTER SCIENCE

serialize# i1 a -> State# s -> (# State# s, Int#, ByteArray# #)
trySerialize# :: a -> State# s -> (# State# s, Int#, ByteArray# #)
deserialize# :: ByteArray# -> State# s -> (# State# s, Int#, a #)

e Occurrence of prohibited closure types (MVar, TVar, IORef) and
other internal errors indicated by error codes

® deserialize# indicates packet format failures
e serialize# may block on synchronisation nodes (blackholes)

® trySerialize# nNever blocks (returns suitable error code)

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston
Slide 17/29

UNIVERSITY OF COPENHAGEN

Serialisation APl in Haskell

Haskell API

serialize :: a -> I0 (Serialized a) -- throws PackException (RTS)
trySerialize :: a -> I0 (Serialized a) -- throws PackException (RTS)
deserialize :: Serialized a -> I0 a -- throws PackException (RTS)

instance Typeable a => Binary (Serialized a)

where ... -- throws PackException (Haskell) -- adding / checking
instance Typeable a => Show (Serialized a) -- type and executable

where ... -- throws PackException (Haskell) -- fingerprints
instance Typeable a => Read (Serialized a)

where ... -- throws PackException (Haskell)

Exception type

data PackException = P_SUCCESS —-- never used

| P_BLACKHOLE | P_NOBUFFER | P_CANNOT_PACK -- RTS errors
| P_UNSUPPORTED | P_IMPOSSIBLE | P_GARBLED -- RTS errors
| P_ParseError | P_BinaryMismatch | P_TypeMismatch -- Haskell errors
J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston .

Slide 18/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Potential Applications

The feature — effectively:
e In a single program: Creating deep copies
e With Binary instance: Persistence, orthogonal to evaluation

e With distribution: Communication and remote execution

Potential applications for runtime-supported serialisation:

e Persistent memoisation of functions across program runs
Persist memoised function at shutdown, load when running again

e Checkpointing (long-running) monadic action sequences
Persist intermediate states (with bindings), recover after
interruptions

e Easy distributed programming
Communicate serialised data to evaluate or execute remotely

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston
Slide 19/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Persistent function memoisation

e Using off-the-shelf memoisation as a HOF from a library. ..

memo :: (a ->b) ->a ->b

e Memoised function can be globally in scope (CAF memoisation):

Persistent memoisation pattern

{-# NOINLINE f_memo #-}
f_memo = unsafePerformI0 $ decodeFromFile "f_memo.cache" ‘catch®
(\e -> print (e::SomeException) >> return f)
where {-# NOINLINE f #-}
f = memo £’
f’ x = ... -- can use f recursively

e Memoised f loaded at first use, in global scope

main = do let x = f_memo ... -- first use
i;é y = f_memo ... -- in memory
é;r;lemo ‘seq‘ encodeToFile "f_memo.cache" f_memo @
J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston .

Slide 20/29

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Checkpointed versions for monad combinators

Serialise m a to a file before running

checkpoint :: (MonadIO m, Typeable a, Typeable m) => FilePath -> m a -> m a

Try to deserialise m a from file and run it, else use second arg.

recovering :: (MonadIO m, Typeable a, Typeable m) => FilePath -> m a -> m a

Checkpointed Monad Combinators
sequenceC :: (Typeable a, Typeable m, MonadIO m) => FilePath -> [m a] -> m [al

sequenceC _ [l =return [
sequenceC name ms = recovering name (seqC_acc [] ms) -- should use Traversable!
where seqC_acc acc 0 = return (reverse acc)

seqC_acc acc (m:ms) = do x <- m
checkpoint name $
seqC_acc (x:acc) ms

mapMC file f xs = sequenceC file (map f xs)
filterMC file pred xs = do flgs <- mapMC ("filterMC"++file) pred xs
return [x | (x,True) <- zip xs flgs]

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston
Slide 21/29

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Distributed Haskells
Haskell-distributed parallel Haskell (Maier, Stewart, Trinder)[MST13]

HdpH: task distribution (Par monad)

type Par a —-- Par monad computation returning type ’a’
type Closure a -- serialisable closure of type ’a’

pushTo :: PE -> Closure (Par ()) -> Par () -- eager explicit
spark :: Closure (Par ()) -> Par () -- lazy implicit

HdpH: Communication via IVars

type IVar a -- write-once buffer of type ’a’

type GIVar a -- global handle to an ’IVar a’

new :: Par(IVar a) -- creation

glob :: IVar a -> Par(GIVar a) -- globalisation

rput :: GIVar(Closure a) -> Closure a -> Par() -- remote write
probe:: IVar a -> Par Bool -- local test

get :: IVar a -> Par a -- local read

J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston
Slide 22/29

DEPARTMENT OF COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Distributed Haskells
Haskell-distributed parallel Haskell (Maier, Stewart, Trinder)[MST13]

HdpH: task distribution (Par monad)

type Par a -- Par monad computation returning type ’a’
-- using Serialized a instead of Closure a

pushTo :: PE -> Serialized(Par ()) -> Par () -- eager explicit
spark :: Serialized(Par ()) -> Par () -- lazy implicit

HdpH: Communication via IVars

type IVar a -- write-once buffer of type ’a’

type GIVar a -- global handle to an ’IVar a’

new :: Par(IVar a) -- creation

glob :: IVar a -> Par(GIVar a) -- globalisation

rput :: GIVar(Serialized a) -> Serialized a -> Par() -- remote write
probe:: IVar a -> Par Bool -- local test

get :: IVar a -> Par a -- local read

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston .
Slide 23/29

UNIVERSITY OF COPENHAGEN

Distributed Haskells
Haskell-distributed parallel Haskell (Maier, Stewart, Trinder)[MST13]

HdpH: task distribution (Par monad)

type Par a -- Par monad computation returning type ’a’
-- using serialisation internally (inside pushTo and spark)

pushTo :: PE -> Par () -> Par () -- eager explicit
spark :: Par () -> Par () -- lazy implicit

HdpH: Communication via IVars

type IVar a -- write-once buffer of type ’a’

type GIVar a -- global handle to an ’IVar a’

new :: Par(IVar a) -- creation

glob :: IVar a -> Par(GIVar a) -- globalisation

rput :: GIVar(a) > a -> Par() -- remote write

probe:: IVar a -> Par Bool -- local test

get :: IVar a -> Par a -- local read

J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston .

Slide 24/29

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Distributed Haskells Directions for future distributed Haskell?

Haskell-distributed parallel Haskell (Maier, Stewart, Trinder)[MST13]
Closure/Static approach in Cloud Haskell and HdpH

HdpH: task distributi P d
b 2 Sl atlouition {(Far mert) e Compile-time closure conversion (code inserted by programmer)

type Par a -- Par monad computation returning type ’a’

-- using Serialized a instead of Closure a e Avoids capturing prohibited types — and other failures
pushTo :: PE -> Serialized(Par ()) -> Par () -- eager explicit
spark :: Serialized(Par ()) -> Par () -- lazy implicit Runtime-supported serialisation explained here
e Exceptions and runtime checks (handlers inserted by programmer)
Similar option for Cloud Haskell (Epstein, Peyton-Jones, Black)[EBPJ11] o Fully delivers on call-by-need

Cloud Haskell e The application code itself is typically short and simple

-- core operation , here with Serialized instead of Closure

. P
spawn :: NodeId -> Serialized (Process ()) -> Process ProcessId -- remote exec. There should be a useful combination!
And more exciting work to do:

On the other hand: Closure/Static approach created to restrict) ‘ .
Adaptive scheduling, GUM global addresses — within Haskell

serialisation (avoiding prohibited types)

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston .
Slide 26/29

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston
Slide 25/29

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE
Status and perspective Conclusions
e Basic support was available since Eden-6.12. o Alternative approach to Haskell serialisation

(no error handling, blackhole blocking semantics, not thread-safe)
e Proposed an extended Haskell APl to recover from failures

e New version will be included in Eden-7.8 (just around the corner) (advocating explict failure handling)

Modified primitive operations, better fault tolerance, error codes

e Source code: o Useful applications: (some specific to this approach)

Parallel Haskell runtime Eden main development repository Memoisation, ~ Checkpointing, Distributed programming

http://james.mathematik.uni-marburg.de:8080/gitweb/
(aIso here: https://github.com/jberthold/ghc/)
Haskell parts (as described here) soon available as a package
(runtime support required for installation)
https://github.com/jberthold/rts-serialisation/

Your contributions are most welcome!
— using it — improving it — revising it —

J.Berthold — Haskell RTS-Serialisation API — HIW'13, Boston . J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston .
Slide 27/29 Slide 28/29

http://james.mathematik.uni-marburg.de:8080/gitweb/
https://github.com/jberthold/ghc/
https://github.com/jberthold/rts-serialisation/

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

@ Jost Berthold.
Orthogonal Serialisation for Haskell.
In Jurriaan Hage and Marco Morazan, editors, IFL'10, 22nd Symposium on
Implementation and Application of Functional Languages, Springer LNCS 6647, pages
38-53, 2011.

ﬁ Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones.
Towards haskell in the cloud.
In Proceedings of the 4th ACM symposium on Haskell, Haskell '11, pages 118-129,
New York, NY, USA, 2011. ACM.

@ Patrick Maier, Rob Stewart, and Phil Trinder.
Reliable scalable symbolic computation: the design of SymGridPar2.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC '13,
pages 1674-1681, New York, NY, USA, 2013. ACM.

@ Philip W. Trinder, Kevin Hammond, James S. Mattson Jr., Andrew S. Partridge, and
Simon L. Peyton Jones.
GUM: a Portable Parallel Implementation of Haskell.
In IFL’95: International Workshop on the Implementation of Functional Languages,
1995.

J.Berthold — Haskell RTS-Serialisation APl — HIW'13, Boston .
Slide 29/29

	Motivation and Background
	Runtime-Supported Serialisation for Haskell
	Parallel Haskell Runtime Support
	Access to serialisation from Haskell
	Possible errors and exceptions

	Applications
	Status

