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Point of this talk

About profiling of parallel Haskell programs

“I parallelised my program but I’m not getting the
speedup I expected.

Why not? What is going on!?”

I We’ll briefly go over basic parallel profiling with
ThreadScope

I Main point is the new ‘par spark’ profiling
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Context

GHC family of profiling / tracing / debugging systems

I time profiling
I heap profiling
I event tracing

I HPC tracing
I GHCi debugger

Only event tracing and HPC work for multi-core programs



Event tracing

Traces runtime events, including
I Haskell forkIO threads starting/stopping
I Garbage collector start/stop
I traceEvent :: String -> IO ()

I various other instantaneous and information events

GHC RTS dumps events to a log file
I low runtime overhead



Eventlog and ghc-events

Eventlog file format
I binary format
I extensible with new events
I also used by Mercury and Eden

ghc-events library used for reading .eventlog files
I used by ThreadScope

ghc-events tool with commands for
I showing event log contents
I merging event logs



ThreadScope

Viewer for .eventlog files



Single-core uses

Limited number of single-threaded uses
I GC visualisation
I comparative tracing using ghc-events merge

Future potential
I could integrate time and heap profiling
I operating system events

I useful for I/O server style apps
I distributed use cases via merging

I time sync is tricky



Compiling, running and viewing

Compile your program
ghc parprog.hs -O -threaded -eventlog -rtsopts

Run your program
./parprog +RTS -N2 -ls -RTS ...

View the eventlog
threadscope parprog.eventlog



Eventlog generation options
In GHC 6.12–7.2
-l (none)

s scheduler
./parprog +RTS -ls

In GHC 7.4+
-l (defaults)

s scheduler
g GC
p par sparks (sampled)
f par sparks (fully detailed)
a all of the above
-x remove class x

./parprog +RTS -l-ag



Activity plots: what they display

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s

The activity plot shows
I combined mutator CPU usage
I runtime activity for each core

I mutator and GC separately



Activity plots: what we can see
0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s

The kinds of runtime behaviours we can see
I that we’re not hitting full N-CPU usage
I that one core is doing all the work
I work is badly distributed
I if there’s lots of ‘stutter’
I the interruption effect of GC, major & minor



Activity plots: what we can see
0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s

Cannot generally see why we see the behaviours we do
I sometimes seeing behaviour is enough of a hint
I can experiment, tweak and compare runs

but basically intuition and trial and error
I at worst, just a more detailed ./parprog +RTS -s

i.e. wall clock, mutator and GC times



Spark profiling

Spark profiles
I an attempt to see why, not just what
I for class of parallel programs using ‘par sparks’

I including libs built on top like strategies
I does not cover forkIO

I including Par monad

Idea is to visualise information that is meaningful to the
parallel paradigm the program is using



Par spark evaluation model

HEC 1HEC 0
I per-core task queue

I tasks created using ‘par‘

I tasks run on any available core

Terminology:
I a task is called a ‘spark’
I a task queue is called a ‘spark pool’

I sparks get ‘converted’, meaning evaluated
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Spark life cycle

Sparks created with ‘par‘

I but spark could be ‘dud’
I but spark pool could be full

Sparks get ‘converted’
I but could have already been evaluated

I now points to a WHNF
I or could have been GC’d

I note: sparks are not GC roots



Interpreting spark graphs
0.1s 0.2s 0.3s 0.4s

I number of sparks created
(per unit time)

I area is total number of sparks
I green for created
I red for overflow
I grey for dud

I number of sparks converted
(per unit time)

I area is total number of sparks
I green for converted
I grey for fizzled
I orange for GC’d

I graph of size of spark pool



Interpreting spark graphs

Distribution of spark sizes

I total evaluation time of sparks of various sizes
I histogram bucket divisions on log scale



Diagnosing spark problems
0.1s 0.2s 0.3s 0.4s

Problems can we diagnose
I too few sparks

(not enough parallelism)
I spark pool hits empty
I low spark creation rate

I too many sparks
I overflow is wasted work
I can cause catastrophic loss of

parallelism



Diagnosing spark problems

More problems can we diagnose
I sparks too small

I overheads too high
I sparks too big

I load balancing problems



Diagnosing spark problems

More subtle cases
I too many dud sparks
I too many sparks that fizzle
I too many sparks that get GC’d



Demo

Demo!



Implementation: spark events

Sampled spark events
I RTS maintains counters of number of sparks created

/ converted / dud . . .
I occasionally log an event with current counters +

spark pool size
I low overhead
I enough for creation / conversion / pool size graphs

Full spark events
I log an event for every spark created / converted . . .
I higher overhead
I needed to calculate spark sizes



Implementation: calculating spark size

Using full spark events we can calculate how long it takes
to evaluate each spark

I sparks are evaluated by special threads
I can see when each spark is picked up
I can see when spark thread is running
I nice implementation using state machine



Future work

Future work we intend to do (more or less)
I polishing spark visualisation

I scaling and rescaling of graphs
I lots of little TODOs

I breakdown of spark graphs by strategy
I labelling sparks with the strategy that generated them

I events from Haskell library code (not just RTS)
I needed to do profiling at the level of library

abstractions, e.g. Par monad
I operating system info via Linux ‘perf’ tracing system

I to find out the reasons for blocking, e.g. syscalls and
being descheduled



Feedback requested

ThreadScope is available now from hackage
I GHC HEAD (version 7.3+) needed for spark events
I gtk-0.12.1 package works on Linux, Windows,

OSX and with all recent GHC versions

We want feedback from ThreadScope users
I what is helpful, unhelpful, missing?

That’s it!

Questions?
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