Fundamentals of Functional Programming
“Function” the Foundation of Functional Programming:
The basis of Functional Programming (FP) style is a function. Here we will try to present a number of definitions of this term. A function according to Simon Thomson (1999 pg.3) is something that computes a result (output) depending upon the values of its inputs. For those who have experience in imperative languages like VB, a function is same as the “function procedure” of VB. People having experience in PL SQL or TSQL can also relate the concept of functions learned in those languages with the concept of function in functional programming. However unlike the languages discussed previously there is no concept of procedure (Written with the keyword “sub” in VB and “void” in C++/C/Java) in functional programming.
Expressions:

Expressions are syntactic terms that yield values which are abstract entities that we regard as answers (Hudak, P, Perterson, J & Fasel, J, 1999, p.2). Expressions in Functional programming are the same as the mathematical expressions but in functional programming expressions consist of functions that are used to model our problem (Thomson, S, 1999, p.7). For example, following is a mathematical expression
3+4-1 ---------- 6

The expression consists of numbers and mathematical functions (addition and subtraction in this case) to yield a new value (6) as the output.

The above expression can be written and executed in environments for Haskell like Hugs and GHC. However for clarity a typical expression of Haskell is given below to give an idea that expressions in Haskell contain possibly function other than the simple functions of mathematics

max 2 3 -------- 3
min 2 3 -------- 2

Value:

In simplest terms, value is merely a piece of data. In imperative languages values are normally numbers or strings. In a popular sub-category of imperative language, Object Oriented Language, objects are also values and are considered as first class citizens. However in functional programming, values can be numbers like: 9,0,10, Strings; “hello”, “haq” as well as functions like: max and min. This means that the expressions in FP can contain functions as inputs or outputs.
Operator:
Simon Thomson (1999, p.49) in his book defines operators in Haskell as infix functions. These infix functions are written between their arguments, rather than before them. Operators in Haskell are either associative or non associative. Associative operators are those that are not sensitive of the sequence of execution, for example, 5+3+2 will always result in 10 whether you execute/solve the right part first or the last part. Non-associative operators are those whose result will differ based upon the sequence of execution or solving, for example, 5-3-2 will result in 0 if the left pair is executed first and will result in 4 if the right part is executed first. The Non-Associative operators are further classified as left-associative or right associative
. The precedence of operators is same as in other languages.
Definitions:

Definitions associate a name to a value of a particular. Here it must be highlighted that Haskell is case-sensitive but this is sensitivity is of slightly different nature. We have been studying conventions in various programming languages that have established to increase the readability of the programs. For instance, the names of classes are to begin with a capital letter and the names of functions need to start with a small word etc. but in Haskell such case-sensitive conventions are strict rules to follow. For example, it is mandatory to start the name of function or value with a small letter and the name of type should start with a capital letter (Daume, H, 2006). Basic types include Int, Float,Char and Bool.
Function Definition:

Functions in Haskell are normally defined as a series of equations (Hudak, P, Peterson, J, & Fasel, J, 1999). The first line of the function declares the type of the thing being defined where as after that the definition of function is given. To elaborate, lets consider the following example

product :: Int->Int->Int

product i j= i*j

The first line given in the above example initially gives a name to the function which is followed by the types of arguments and return type. In Haskell the last type represents the type of return value. Haskell gives a lot of flexibility in defining the functions. In Haskell while defining functions one can specify various expressions one of which will get executed based upon the value passed as argument. For example, for the product function created above, we can have the following definitions

product :: Int -> Int -> Int

product 0 j = 0

product i 0 = 0

product i j = i*j

In the above example if a user passes 0 in the first or in the second argument then 0 will be returned (this has been done to model mathematical rule that anything multiplied by zero will return zero). Execution of expression is done only in the case when both the arguments will have a value other than zero. Another alternative of defining the above is as follows

product :: Int -> Int -> Int

product i j

 | i==0 || j==0 = 0
 | otherwise = i * j
This example also consists of code that returns 0 when any one argument is zero. This is called pattern matching where the programmer is able to specify a variety of patterns and the expression that will get executed in response. In other words, pattern matching can be used for distinguishing between certain sorts of cases in function definitions (Thomson, s, 1999). More specifically speaking this is just one kind of pattern matching in which the pattern is called refutable pattern. There is another kind of pattern that is known as irrefutable. Technically speaking formal parameters are called irrefutable as they never fail to match. Based on these patterns names are given to the arguments that are passed to the function. For example:

product :: Int->Int->Int

product i j= i*j

 The text written on the left hand side of ‘=’, after the name of function, i.e. “product” is an irrefutable pattern. When such function is called with the statement like ‘product 1 2’ the first argument will be given the name ‘i’ and second will be named as ‘2’.
We will be studying patterns in more detail while covering the topics like ‘List’
Types:

A type is considered as a category of values. For example, Integer is a category to which all whole numbers till 2147483647 belong. It is important to mention that Haskell uses a system of type inference which means that it is not mandatory to specify the type of expressions; the type will be inferred from the context.
Hugs allows you to apply type inference to find the type by using the command “:type” followed by expression whose type is required to be identified. Similary ghc provides a command “:t” that can be used for the purpose mentioned above. Haskell types include Int (for both +ve and –ve integers), Double (for floating point values), Char (for single characters), String etc.
Tuples:
In addition to single values, it is some time required to store some values as a group. For example a point in a graph is represented by two values i.e. of x-axis and y-axis. In order to model such requirements Haskell has introduced the concept of Tuples. Tuples in Haskell can be compared with “structures” in C/C++. Like structures Tuples are able to group together values of dissimilar types. In Haskell tuple is the general term that is used for pairs (group of two values), triples (group of three values), quadruples (group of four values) so on and so forth. Before using tuples one can define and give tuple a name. This name will act as a short hand for the actual type. To explain this lets consider an example of modeling information related to course. Information related to course includes the title of the course and credit hours of the course. For example
(“APLC”, 15)

(“DWDS”, 15)

The above information is related to a course and belongs to a type (String, Int). Haskell allows us to give a name to this type. The given name whenever used in future will represent the type (String, Int). Following is the example that gives a type name to a tuple type and demonstrates that how it reduces the load of programmer.

getCourseCredits :: (String, Int)-> Int

getCourseCredits (x, i) = i

getCourseName :: (String, Int) -> String
getCourseName (x , i) = x

The above lines of code define functions whose input parameter is information regarding course. For simplicity sake, we have considered only two attributes of course, however, in real-life there will be a lot many of them. Think of writing all those attributes whenever you want to specify course as an input or return value. In addition to this, in most cases there won’t be only two methods related to a particular concept (Course in this example) but there will be many, which means repeating the attributes related to the concept many times. This will only add to the clutter in code and will increase the size of code exponentially. To resolve this situation, Haskell allows you to give names to types. For example

type Course = (String, Int)

getCourseCredits ::Course -> Int

getCourseCredits (x, i) = i
getCourseName :: Course -> String

getCourseName (x,i) = x

The above example demonstrates in the first line that how a name can be given to a particular tuple. Notice the usage of capital letter at the starting of type name. This name (called synonym) whenever used in future will be evaluated as (String, Int). Another very commonly used example is that of String which is used as a synonym for [Char] (type String = [Char]).
The above demonstrates pattern matching as well. As it can be seen in the definition that rather than using the type name Course we have used x and i. The effect is that the first element of the pair Course is identified by the name x and the second one is identified by the name i.
Lists:

In Haskell list is a collection of items of homogenous types. People accustomed with imperative languages will recognize list with term Array. The items in a list can be of any type from Int to tuple and the length of list is not fixed. This is in contrast to the arrays in traditional imperative languages that have fixed lengths. What is exciting about lists in Haskell is that there are a lot of functions defined for accessing and manipulation of lists as well as defining lists.
To represent a sequence of elements as list one has to separate each element in a list by a comma and enclose the entire sequence with square brackets. For example [12, 4, 56]. In contrast to tuples in which the elements were fixed in length, the size of list is not fixed and one can easily add elements to the top of list by using the cons operator ‘:’. For example to add element to a list [12, 4, 5] we can write 1:[12,4,5]. This process is known as consing. In fact an entire list can be defined in such a way. To elaborate this, another example is presented. 1:2:55:3:[]. Notice the presence of empty list at the end which is by default part of every list. In addition to this the ++ is used for concatenating two lists. [2,3] ++ [4,5] will result in [2,3,4,5].

As mentioned previously that a lot of functions have been defined for lists. One of them is head function that returns the first element of the list. Another one is the tail function that returns all elements except the head of list. Length function returns the total number of elements in the lists. Haskell also consists of a built-in function called sum which calculates the sum of all elements in a list.
The section of list was started by mentioning that there are a lot of ways for indicating the elements of the list. To start with, we will see how to declare a list by giving the lower and upper bound.

[1..5]

Will contain

[1,2,3,4,5]

[1,3,..9]

Will contain

[1,3,5,7,9]

Note that by giving two values at the start, a step value can be indicated. A very impressive feature of Haskell is list comprehension that allows you to write description of a list in terms of elements of another list. In the description we state the list from which the element will be picked up, the criteria on the basis of which the element will be picked up and transformation that will be applied to each element. Let’s understand list comprehension with example.
[x^2 | x <- [1,2,3,4,5], x `mod` 2 ==0]

[1,2,3,4,5] is the list from which element will be picked up and x refers to individual elements. If you consider the entire line it could be read as x is an element of the list [1,2,3,4,5]. “x `mod` 2 ==0” is the condition which if fulfilled the transformation (the expression before ‘|’ symbol) will be performed. The transformation in this case is “x ^ 2”. The output of this program will be [4,16]. The reason is that when each element is picked and placed one by one in element x then only 2 and 4 fulfill the condition therefore transformation is applied to only two of them. It is worthwhile to remind that one has to specify an expression in place of transformation and ever thing in Haskell is expression. Even if you write only ‘x’ it is considered as an expression therefore if the objective is the find only the even numbers between 1 and 5, the code above can be amended as follows.
[x|x<-[1,2,3,4,5], x `mod` 2 == 0]

It is also possible not to write the condition as well. For instance, if one requires a list of squares for numbers from 1 to 5 the code above can be modified as follows.
[x^2 | x <- [1,2,3,4,5]]

Imperative language programmers can compare the feature of list comprehension discussed above with the “foreach” loop available in languages like VB 6, VB.NET, C# etc. for example a for each loop to get the squares of even numbers will look some thing like the code below.
int[] array= {1,2,3,4,5};
int[] arr= new int[2];

int i=0;

foreach (int x in array)

{

 if (x%2.0 ==0)

 {

 arr[i++] = x*x;
 }

}
The above example also proves the simplicity of Haskell.

Higher Order Functions:
A function that takes a function as argument or returns function as a result is known as higher order function. “map” is an example of higher order function which takes a function as argument, this function is then applied to each member of list passed as a second argument. Higher order functions provide a way through which we can define functions that are more generalized.
Consider an example of string manipulation (module Char should be imported before using the code using the line “import Char” at the top of file).
 allUpper :: [Char] -> [Char]

allUpper [] = []

 allUpper (c:ch) = toUpper c : allUpper ch

The above code converts all characters is a String (type String = [Char]) into capital ones. Similarly we can write another function to convert all the characters in a String into smaller case.

 allLower :: [Char] -> [Char]

 allLower [] = []

 allLower (c:ch) = toLower c : allLower ch

The above are two functions that are performing some transformation or action on the elements of the list but since the nature of transformation is different therefore we have to define two different functions, however, Haskell provides higher order functions that allow you to define a function that apart from accepting the list as argument also accepts the operation or transformation that is to be applied on each element. An example of such a function is following.
 operateChars :: (Char -> Char)->[Char]-> [Char]

 operateChars _ [] = []

 operateChars func (c:ch) = func c : operateChars func ch

This single function can be used for converting the characters into upper as well as lowercase. For example, if the following line is written.

operateChars toUpper "aaaAA"
All the characters will be converted to uppercase and if the following is written then all elements will be converted to lowercase

operateChars toLower "aaAs"
As the above example has demonstrated that higher order function enable programmers to make functions that are more generalized then the traditional lower-order functions.
Another example of higher order function is the filter method that takes as an argument a function returning a Boolean value. Each element of the list is passed to the function and if True is returned, the element is added into the output list. For Example
filter isDigit "hello 9090 hello"
if you prefix filter with :t or :type the following will be returned indicating the arguments as well as return values
(a -> Bool) -> [a] -> [a]
The brackets at the start (a -> Bool) indicate a function. (Remember that ‘->’ indicate functions). ‘a’ refers to a parameter of a general type.

Functions in Haskell are also called pure. Pure Functions are those that do not have a side effect. According to Daume, H (2006) a simple test to check whether function is pure or not is to see that Given the same arguments, will this function always produce the same result.

A concept that is the product of “no side effects” and “Pure Functions” is that of “Referential Transparency”. According to Daume, H (2006), there is no agreed-upon exact definition of Referential Transparency. There are a number of them formalized differently but the interpretation is the same. This term means that “Equals can be substituted for equals”. If two expressions have equal values then one can be substituted for other in any larger expression. This characteristic is dependent upon the feature of having no side-effect. If one function f1 for instance uses the value of x to produce an output and another function f2 applies the same logic on x to produce the same result then f1 can be substituted with f2 and vice-versa. In addition to this if function f (x) is called on the first line of the program and on the last line as well the output will remain same. The reason behind this is that the value of x remains same as no side-effects are possible in the language.
Functional Composition:

This concept is common to almost every programming language. It simply means that the result of one function is used as an argument to the result of another function.
For instance in the following code the output of read is used by square function as argument (read function converts string into numeric form)

square (read “4”)

Notice the usage of parenthesis which are used to associate the argument with read method. If you do not use these, the interpreter will not understand the line and will try to find the meaning of “square read” which obviously does not have any meaning. Haskell has also introduced a mathematical notations for function composition which is the period (‘.’) symbol. In mathematics the symbol ‘◦’ is used between two functions f and g like, f ◦ g is interpreted as f is f is following g (Daume, H 2006). Using the (“.”) operator the above statement can be restructured as follows
(square . read) “4”
Which means that square follows read or in other words read will get executed first and then square will get executed using the output of read. According to Daume, H (square.read) means that a new function is being created which takes an argument, applies read to it and then applies square to the result
Partial Application:

In simple words partial application is when you supply less number of arguments than required by the function. For example, in this text we have given example of a code that uses filter method to extract numbers from a string. There might be a scenario that requires us to perform this operation a number of times i.e. a number of times we will be applying the filter method in conjunction with the isDigit function. Haskell enables you reduce your work load a little bit by allowing you to name the part of function-call that remains stagnant. The name given can be used in future in order to refer to the part. Below is the code demonstrates the concept discussed above.
getDigits = filter isDigit

Here it can be observed that the filter function is called by passing a single argument. However in normal cases it is called by passing two arguments including a function (A predicate that returns True or False) and a list. This means that we have deferred the indication of list and the list will be indicated at the point when getDigits will be called. To illustrate this, a sample code follows
getDigts “14 August 1947”

will return

141947

Currying:
To understand this concept, see the example of calling Math.pow function in java. It was called by pasing the arguments enclosed within braces like Math.pow(2,3). In Haskell it is called uncurried form and the interpreter considers this as a pair is being passed to the function.. A method definition to support uncurried way of passing arguments will look like this.
ucform :: (Int, Int) -> Int

ucform (x,y) = x+y

The obvious drawback is that no matter how many arguments are passed they are considered as a single entity (pair, triple ,quadruple etc.) thus the concept or phenomenon of partial application is not possible. Partial Application is accepting arguments less then the number required which in response, rather than returning error, returns a new function that accepts the remaining arguments. Here since there is only one entity being accepted therefore there is possibility of partial application. The other way of calling a function is what is known as curried form named after Haskell Curry (Thomson, S. 1999). It is because of currying partial-application is possible in Haskell. Currying involves providing the arguments without enclosing them in brackets. This enables interpreter to treat each argument independently, one at a time. For example when we write “add 2 3”. The first argument is applied to add i.e. 2 and in response a new function is returned and then 3 is applied to the new function. All the functions that we have created before this section used the curried form. Another reason why Haskell programmers prefer curried notation is that it is somewhat neater.
Polymorphism:

Polymorphism means having many shapes. A function is said to be polymorphic if it has many types (Thompson, 1999). There are many functions that are polymorphic, like length, map and filter. These are called so because they accept any argument as input. Length for example is able to calculate the length of a list of any type. For understanding how such polymorhic function can be created lets see the definition of the “product” method that we have already created.
product :: Int->Int->Int

product x y= x*y

Here the first line is declaring that the method will accept two integers and will return one. In order to tell that any integer can be passed to the function we have used the letters x and y. x and y in other words are variables. Now if we want that the method should accept argument of any data type this means that the data type is not a constant but a variable, therefore if we include a variable in the type definition of a function this will be interpreted as an indication that any data type can be passed to the method.
product :: a -> a ->a

product x y = x*y

In the above method’s type definition a single variable “a” has been used for the arguments as well as return type. This has the effect that all the arguments should have the same type. If we modify the statement as follows.
product :: a -> b -> a

This means that the return type should be of the same type as the first argument and both arguments can be of different types.
Similarly if we use three different variable as follows then the effect will be that all the arguments can be of different types (or similar) and the return value can be of any type (including those as that of aruguments)

product :: a -> b -> a

· Thompson, S, 1999 Haskell: The craft of functional programming, 2nd Edition, Addison-Wesley
· Hudak, P, Perterson, J & Fasel, J, 1999, “A Gentle Introduction to Haskell-98”, Retrieved July 02 2008 from http://www.haskell.org/tutorial/
· Daume, H, 2006 “Yet Another Haskell Tutorial”, Retrieved On July 3, 2008 from http://darcs.haskell.org/yaht/yaht.pdf
� Right associative and left can be explained more.

