
A Pretty Printer
that

Says what it Means

David Raymond Christiansen1

1Supported by the Danish Advanced Technology Foundation
(Hºjteknologifonden) grant 017-2010-3



















The Legend

Presentations: a connection between screen output and the
underlying objects.

10



The world, today

▶ Programming languages can no longer live apart in their own
world

▶ We must support a variety of interfaces: console, Web, editors,
and more

▶ It is useful to support clients other than development
environments: IRC bots, search engines, and unknown products
of ingenuity

11



The world, today

▶ Programming languages can no longer live apart in their own
world

▶ We must support a variety of interfaces: console, Web, editors,
and more

▶ It is useful to support clients other than development
environments: IRC bots, search engines, and unknown products
of ingenuity

11



The world, today

▶ Programming languages can no longer live apart in their own
world

▶ We must support a variety of interfaces: console, Web, editors,
and more

▶ It is useful to support clients other than development
environments: IRC bots, search engines, and unknown products
of ingenuity

11



This talk

How did we implement presentations in Idris? Can Haskell make
use of the same technique?

12



What is Idris?

▶ Pure functional programming language

▶ Resembles Haskell: type classes, do-notation,
monadic IO, layout syntax

▶ Full dependent types

▶ Primarily developed by Edwin Brady at St
Andrews, contributors around the world

▶ Written in Haskell

13



What is Idris?

▶ Pure functional programming language

▶ Resembles Haskell: type classes, do-notation,
monadic IO, layout syntax

▶ Full dependent types

▶ Primarily developed by Edwin Brady at St
Andrews, contributors around the world

▶ Written in Haskell

13



What is Idris?

▶ Pure functional programming language

▶ Resembles Haskell: type classes, do-notation,
monadic IO, layout syntax

▶ Full dependent types

▶ Primarily developed by Edwin Brady at St
Andrews, contributors around the world

▶ Written in Haskell

13



What is Idris?

▶ Pure functional programming language

▶ Resembles Haskell: type classes, do-notation,
monadic IO, layout syntax

▶ Full dependent types

▶ Primarily developed by Edwin Brady at St
Andrews, contributors around the world

▶ Written in Haskell

13



What is Idris?

▶ Pure functional programming language

▶ Resembles Haskell: type classes, do-notation,
monadic IO, layout syntax

▶ Full dependent types

▶ Primarily developed by Edwin Brady at St
Andrews, contributors around the world

▶ Written in Haskell

13



What is Idris?

▶ Pure functional programming language

▶ Resembles Haskell: type classes, do-notation,
monadic IO, layout syntax

▶ Full dependent types

▶ Primarily developed by Edwin Brady at St
Andrews, contributors around the world

▶ Written in Haskell

13



What is Idris like?

Demo!

14



How does this work?

▶ The pretty printing library supports semantic annotations

▶ Annotations describe the meaning of sub-documents

▶ Provide in-band and out-of-band communication of
annotations

▶ REPL commands take annotations as arguments

15



How does this work?

▶ The pretty printing library supports semantic annotations

▶ Annotations describe the meaning of sub-documents

▶ Provide in-band and out-of-band communication of
annotations

▶ REPL commands take annotations as arguments

15



How does this work?

▶ The pretty printing library supports semantic annotations

▶ Annotations describe the meaning of sub-documents

▶ Provide in-band and out-of-band communication of
annotations

▶ REPL commands take annotations as arguments

15



How does this work?

▶ The pretty printing library supports semantic annotations

▶ Annotations describe the meaning of sub-documents

▶ Provide in-band and out-of-band communication of
annotations

▶ REPL commands take annotations as arguments

15



Concretely

Begin with a pretty-printing library:

▶ Hughes-Peyton Jones style

▶ Wadler-Leijen style

16



What's in a pretty printer?

▶ Type Doc, representing sets of strings

▶ Combinators for constructing a Doc

▶ Renderers that convert a Doc into a String, or to write it to a
handle

17



What's in a pretty printer?

▶ Type Doc, representing sets of strings

▶ Combinators for constructing a Doc

▶ Renderers that convert a Doc into a String, or to write it to a
handle

17



What's in a pretty printer?

▶ Type Doc, representing sets of strings

▶ Combinators for constructing a Doc

▶ Renderers that convert a Doc into a String, or to write it to a
handle

17



Make it say what it means!

1. Add a type parameter to Doc, representing the type of
annotations

2. Add the combinator
annotate :: a -> Doc a -> Doc a

3. Add output methods:
outputSpans :: Doc a -> (String, [(Int, Int, a)])

displayDecorated :: (a -> String -> String)
-> Doc a -> String

18



Make it say what it means!

1. Add a type parameter to Doc, representing the type of
annotations

2. Add the combinator
annotate :: a -> Doc a -> Doc a

3. Add output methods:
outputSpans :: Doc a -> (String, [(Int, Int, a)])

displayDecorated :: (a -> String -> String)
-> Doc a -> String

18



Make it say what it means!

1. Add a type parameter to Doc, representing the type of
annotations

2. Add the combinator
annotate :: a -> Doc a -> Doc a

3. Add output methods:
outputSpans :: Doc a -> (String, [(Int, Int, a)])

displayDecorated :: (a -> String -> String)
-> Doc a -> String

18



What About Windows?

Windows needs side effects to change console colors: ANSI codes
don’t work!

19





More generality, please!

displayDecoratedA :: (Applicative f, Monoid b)
=> (String -> f b)
-> (a -> f b) -> (a -> f b)
-> Doc a -> f b

For Windows output, let f be IO and let b be ()

21



More generality, please!

displayDecoratedA :: (Applicative f, Monoid b)
=> (String -> f b)
-> (a -> f b) -> (a -> f b)
-> Doc a -> f b

For Windows output, let f be IO and let b be ()

21



Doc is a Functor

Because Doc is a Functor, we can transform or decorate annotations.

Uses:
▶ Add additional type information without imposing

dependencies on pretty-printer
▶ Convert annotations to the IDE protocol
▶ Type check terms that occur inside of docstrings

22



Doc is a Functor

Because Doc is a Functor, we can transform or decorate annotations.
Uses:

▶ Add additional type information without imposing
dependencies on pretty-printer

▶ Convert annotations to the IDE protocol
▶ Type check terms that occur inside of docstrings

22



Implementations

annotated-wl-pprint
Idris’s pretty-printing library — a Wadler-Leijen derivative

pretty
Trevor Elliott at Galois implemented annotations for it in 2014

23



Similar libraries

wl-pprint-extras
A free monad based on wl-pprint where effects can be em-
bedded in documents

24



Thanks for listening!

▶ When pretty printers say what they mean, listeners don’t need
to guess

(or, even worse — parse)

▶ Editor commands can get ahold of references directly

▶ Can be implemented incrementally:
type Doc = Annotated.Doc ()

▶ Let’s take good ideas from Lisp and Smalltalk UIs, and make
them even better with types!

25



Thanks for listening!

▶ When pretty printers say what they mean, listeners don’t need
to guess (or, even worse — parse)

▶ Editor commands can get ahold of references directly

▶ Can be implemented incrementally:
type Doc = Annotated.Doc ()

▶ Let’s take good ideas from Lisp and Smalltalk UIs, and make
them even better with types!

25



Thanks for listening!

▶ When pretty printers say what they mean, listeners don’t need
to guess (or, even worse — parse)

▶ Editor commands can get ahold of references directly

▶ Can be implemented incrementally:
type Doc = Annotated.Doc ()

▶ Let’s take good ideas from Lisp and Smalltalk UIs, and make
them even better with types!

25



Thanks for listening!

▶ When pretty printers say what they mean, listeners don’t need
to guess (or, even worse — parse)

▶ Editor commands can get ahold of references directly

▶ Can be implemented incrementally:
type Doc = Annotated.Doc ()

▶ Let’s take good ideas from Lisp and Smalltalk UIs, and make
them even better with types!

25



Thanks for listening!

▶ When pretty printers say what they mean, listeners don’t need
to guess (or, even worse — parse)

▶ Editor commands can get ahold of references directly

▶ Can be implemented incrementally:
type Doc = Annotated.Doc ()

▶ Let’s take good ideas from Lisp and Smalltalk UIs, and make
them even better with types!

25


