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The Legend

Presentations: a connection between screen output and the
underlying objects.

10



The world, today

▶ Programming languages can no longer live apart in their own
world

▶ We must support a variety of interfaces: console, Web, editors,
and more

▶ It is useful to support clients other than development
environments: IRC bots, search engines, and unknown products
of ingenuity
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This talk

How did we implement presentations in Idris? Can Haskell make
use of the same technique?
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What is Idris?

▶ Pure functional programming language

▶ Resembles Haskell: type classes, do-notation,
monadic IO, layout syntax

▶ Full dependent types

▶ Primarily developed by Edwin Brady at St
Andrews, contributors around the world

▶ Written in Haskell
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What is Idris like?

Demo!
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How does this work?

▶ The pretty printing library supports semantic annotations

▶ Annotations describe the meaning of sub-documents

▶ Provide in-band and out-of-band communication of
annotations

▶ REPL commands take annotations as arguments
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Concretely

Begin with a pretty-printing library:

▶ Hughes-Peyton Jones style

▶ Wadler-Leijen style
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What's in a pretty printer?

▶ Type Doc, representing sets of strings

▶ Combinators for constructing a Doc

▶ Renderers that convert a Doc into a String, or to write it to a
handle
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Make it say what it means!

1. Add a type parameter to Doc, representing the type of
annotations

2. Add the combinator
annotate :: a -> Doc a -> Doc a

3. Add output methods:
outputSpans :: Doc a -> (String, [(Int, Int, a)])

displayDecorated :: (a -> String -> String)
-> Doc a -> String
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What About Windows?

Windows needs side effects to change console colors: ANSI codes
don’t work!
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More generality, please!

displayDecoratedA :: (Applicative f, Monoid b)
=> (String -> f b)
-> (a -> f b) -> (a -> f b)
-> Doc a -> f b

For Windows output, let f be IO and let b be ()

21



More generality, please!

displayDecoratedA :: (Applicative f, Monoid b)
=> (String -> f b)
-> (a -> f b) -> (a -> f b)
-> Doc a -> f b

For Windows output, let f be IO and let b be ()

21



Doc is a Functor

Because Doc is a Functor, we can transform or decorate annotations.

Uses:
▶ Add additional type information without imposing

dependencies on pretty-printer
▶ Convert annotations to the IDE protocol
▶ Type check terms that occur inside of docstrings
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Implementations

annotated-wl-pprint
Idris’s pretty-printing library — a Wadler-Leijen derivative

pretty
Trevor Elliott at Galois implemented annotations for it in 2014
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Similar libraries

wl-pprint-extras
A free monad based on wl-pprint where effects can be em-
bedded in documents
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Thanks for listening!

▶ When pretty printers say what they mean, listeners don’t need
to guess

(or, even worse — parse)

▶ Editor commands can get ahold of references directly

▶ Can be implemented incrementally:
type Doc = Annotated.Doc ()

▶ Let’s take good ideas from Lisp and Smalltalk UIs, and make
them even better with types!
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