
Death {by,to} Dynamic Linking

GHC 7.8

• System dynamic linker for GHCi

• Why?
• building our own linker is hard

• OS X changes its object format

• some features (were) not supported (weak symbols, constructors/destructors)

• problems with using some external libraries (C++?) in GHCi

Implications

• Building code for dynamic linking is a different "way"

• Cabal must build stuff both ways
• So that we can use packages in GHCi

• Concerns about overhead and backwards-compat
• static linking is still the default for GHC

• We added -dynamic-too to reduce the cost of building dynamic

• Need to link shared libs on the fly in GHCi to load compiled code

What happened

• Some things work in GHCi that didn't before

• We can get GHCi support on some platforms where we didn't before
(using LLVM backend + dynamic linking or via C)

• GHCi starts up faster

• Fewer weird things in the base package to support having two copies
of base.

Fallout

• If you use TH, we need dynamic objects, so -dynamic-too is enabled
automatically (slower compilation)

• Still doesn't work on Windows (GHC package too big)
• Complication in the compiler to support -fPIC/-dynamic
• Cabal must build both versions, takes 2x as long
• -dynamic-too is still slower than –static
• Had to drop –dynamic optimisation that makes intra-package calls fast
• bugs:

• GHCi doesn't pick up -dynamic-too objects
• Interrupting -dynamic-too compilations leaves things in a weird state
• still need the RTS linker (perhaps only for x86_64?)

