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Editorial

by Wouter Swierstra 〈wss@cs.nott.ac.uk〉

For this issue of The Monad.Reader, I asked all the student participants of
Google’s Summer of Code mentored by Haskell.org to write something about their
project. I was very pleased indeed when three of the nine students agreed to write
an article for this issue: Thomas Schilling describes the Haskell Cabal and his work
on Cabal Configurations; Jason Dagit gives an introduction to darcs’s theory of
patches; Mathieu Boespflug presents his work on the type checker behind nhc98
and Yhc. These three articles together find a rather nice balance between practical
tools and theoretical challenges.

As an editor, it is my responsibility to say a few words about the other Summer
of Code projects. To make the task of writing the editorial somewhat less tedious,
I chose to write a short haiku about all the remaining projects. This proved quite
a challenge! Hopefully my (lack of) poetic talent should convince next year’s
students to write an article, rather than be subjected to this public humiliation:

Abstracting Parsec To load code faster
over any input type. and save disk space, GHC
The world on a String. must share libraries.

Improving Hackage. Binding to libcurl.
Daemons can build your package Get your data from the web.
and Haddock your code. Who needs Firefox?

Haskell IDE, A tracer that can’t
will it ever beat Emacs? cope with Cabalized code is
Only time will tell. an old Hat, indeed.

Why haikus you ask? Well: Why should I squander, a boatload of syllables?
Seventeen will do.





Cabal Configurations

by Thomas Schilling 〈nominolo@gmail.com〉

The Haskell Cabal is a tool specifically designed to help you package and release
your Haskell code. Additionally, it provides a simple interface to common build
and post-processing tasks such as running a test suite or generating Haddock doc-
umentation. Cabal configurations are a major new feature of the latest release.

Introduction

The Haskell Cabal [1] aims to provide a build environment suitable for most Haskell
libraries and executable programs. Cabal itself is a Haskell library and comes with
a few front-ends that utilize this library to manage Haskell packages. At the
moment, only command-line based tools exist, but graphical front-ends, perhaps
integrated into an IDE, are possible in principle. A version of Cabal is shipped with
each GHC [2] and Hugs [3] release, but it is meant to be usable with any Haskell
compiler or interpreter. Cabal is part of a larger infrastructure for distributing
and organizing Haskell libraries and programs. Most Cabal packages are available
from the Hackage [4] website.

If you want to install a Cabal package, you just need to download the sources
and execute the following three commands:

runhaskell Setup.lhs configure --prefix=$HOME --user

runhaskell Setup.lhs build

runhaskell Setup.lhs install

This will install and register the package for the current user only, and therefore
does not require administrator privileges. Cabal provides a multitude of options;
for more information please consult the user’s guide [5].

Using cabal-install [6] this process is even simpler. The cabal-install tool
can fetch a package and all its dependencies from Hackage and install everything
with a single command.
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For example, to install xmonad version 0.4, you would just need to execute the
following command:

cabal install xmonad-0.4

Developers can use Cabal to avoid writing complex Makefiles, and subsequently
distribute their packages via Hackage. For packages with complex requirements
Cabal allows different build types, such as the autoconf [7] tools. Additionally,
developers can add custom build steps by means of a hooks interface1.

The remainder of this article will describe the basic workings of Cabal, describe
the new configurations feature, and will give a brief overview of which issues are
currently being worked on.

Package Descriptions

So what do you need to do to release some Haskell code as a Cabal package? For
most libraries and applications, this requires two simple steps:

1. create a package description file;
2. and create a Setup.lhs (or Setup.hs) file.

Most Setup.lhs files are just the trivial program shown in Figure 2.
The package description is a file named packagename.cabal and contains meta-

data as well as a technical description of the package. Meta-data might consist
of things like the package name and version, a textual description of the package,
etc. The technical description of the package comprises things such as exposed
interface, packages and tools required to build this package, command line options
to the compiler, etc. A sample description is shown in Figure 1 (see below for a
further description.)

Building a Cabal package is done by invoking the setup script with the desired
command – the simple three-step install process we described in the introduction
is one example of using Cabal. These commands will call into the Cabal library
and invoke the necessary system commands. You can also use similar commands
to bundle your source code, generate Haddock documentation, or run a test suite.

In Cabal 1.2.0 the syntax changed slightly, but is backwards-compatible with
older package description files. The example in Figure 1 shows the typical struc-
ture of a package description file. It consists of a global part, that contains general
information that applies to the package as a whole, followed by possible flag defini-
tions, an optional library section, and an arbitrary number of executable sections.

The package described in Figure 1 contains one library (named like the package)
and one executable named ex1 . The library exports the three modules named

1Unfortunately, there is no reliable hooks interface at the moment, since parts of the Cabal API
are occasionally being changed to incorporate new requirements.

6



Thomas Schilling: Cabal Configurations

package: Foo

version: 0.42

cabal-version: >= 1.2

license: BSD

license-file: COPYING

copyright: Jane Doe <jane@example.com>

category: Example

synopsis: An example package for TMR.

description: This is just an example package.

.

We can have newlines in any field value.

flag UseTypeMagic

description: Implement most features in the type-system.

Requires a sufficiently smart compiler.

default: False

library

exposed-modules: Example1, Example2, Example3

build-depends: base >= 3.0 && < 4.0, filepath > 1, mtl >= 1.0

if os(windows)

build-depends: Win32

else

build-depends: unix

if flag(UseTypeMagic)

extensions: MultiParamTypeClasses, FunctionalDependencies

exposed-modules: Example4

executable ex1

main-is: Main.hs

build-depends: regex

other-modules: Example1

Figure 1: An example package description file.
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#!/usr/bin/runhaskell

> module Main where

> import Distribution.Simple

> main :: IO ()

> main = defaultMain

Figure 2: The default Setup.lhs file.

Example1 through Example3 , and, optionally, Example4 if the package user wishes
to build it and the compiler provides the necessary features. The executable has
the main file Main.hs and needs the Example1 module from the library. To build
the library, the user must have the packages base, filepath, mtl , and, depending
on the operating system, either Win32 or unix installed. To build the executable,
the regex package has to be present as well. Each package may (and should) be
constrained by a version range.

The ability to specify different variants, or configurations, of a package was the
contribution of this Google Summer of Code project.

Cabal Configurations

Allowing different package descriptions depending on the system, and even en-
abling or disabling features as a user sees fit, has been a highly desirable feature –
but no one seemed to be willing to implement it, even after the basic design had
been agreed on [8]. Many package authors used hooks in setup scripts, but this
led to needless duplication of code and was not transparent to tools that read the
package description. Furthermore, many packages could not be built with multiple
versions of GHC because the base package was split up into many smaller packages,
thus essentially every package had to do some kind of dispatch on the version of
the base package it is being compiled with.

Cabal configurations enable conditional parts in package descriptions. In order
to check if a package can be built on a given platform or to figure out which other
packages it depends on, it is now necessary to evaluate any conditions and to
merge the field descriptions of all the selected branches. For most fields, merging
means appending the fields from inside the conditional to the parts outside the
conditionals, e.g.

build-depends: foo

if c

build-depends: bar

8
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will be merged to

build-depends: foo, bar

if c evaluates to true. Boolean fields are combined using conjunction. Some fields
cannot be merged, resulting in an error during the configure phase.

Conditions are formed with predicates combined using the usual boolean oper-
ators &&, ||, and ! (negation). Predicates as of Cabal 1.2.0 are:2

os(...) tests on the operating system the package is being compiled for. For
example os(windows).

arch(...) tests on the architecture. For example arch(ppc).

impl(...) tests on the implementation type and version. For example, impl(

GHC >= 6.8 ).

flag(...) returns the current value of the specified flag, see below.

Tests on system parameters are rather simple. However, packages sometimes
come with features, not every user wants to use (for example debugging support)
or can use different packages to implement the same features (e.g., use different GUI
toolkits), depending on what the user requests. To enable leaving those choices
to the user Cabal allows definitions of flags. A flag has a name, an optional
description, and a default value. Unless specified differently, a flag defaults to
True. The idea behind this is, that typically flags represent features, and most
users want to use all features unless there is a good reason not to (e.g., the compiler
does not provide certain features.)

Flag Resolution

A flag can be assigned manually, during the configure phase via the --flags or -f
option. To force a flag to True simply list the flag name as the argument. To force
a flag to False list the flag name with a "-" in front of it. You can also specify
multiple flags at once, for example

runhaskell Setup.lhs configure --flags="gtk -debug"

A forced flag will always be assigned the value as specified by the user, thus
wherever it occurs in a condition, it will always evaluate to that value.

The tricky case is when the user does not specify an explicit value for flags.
One choice would be to always assign the default value, and let the user specify

2A possible fifth predicate package(...) is being worked on that allows adding different
dependencies, based on the version picked for one package. See the original proposal [9]
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a custom value if the package fails to configure due to missing dependencies. The
user would then have to figure out which flags caused it to fail and whether there
is an assignment that allows the package to build successfully. To make things
easier, Cabal takes a different approach. All flags not explicitly set by the user are
considered variable and Cabal tries to find a suitable assignment, that is compatible
with the packages available on the system. The algorithm is very simple, and can
probably be best described by the following code snippet

findAssignments :: [Flag ]→ Maybe [(Flag ,Bool)]
findAssignments varFlags =

find satisfiesDependencies assignments
where

assignments :: [ [(Flag ,Bool)]]
assignments = mapM (λf → [(f ,flagDefault f )

, (f ,¬ (flagDefault f ))])
varFlags

Note that mapM here works in the list monad. That is, given three flags a, b, and
c, each defaulting to True, the above code will try all possible flag assignments in
the order
I a=True, b=True, c=True
I a=True, b=True, c=False
I a=True, b=False, c=True
I a=True, b=False, c=False
I ...

This algorithm does of course have exponential complexity in the number of
variable flags. At the moment, Cabal does not do any special optimizations, since
the number of flags is usually sufficiently low that this shouldn’t be an issue.
(Having a SAT-solver in Cabal is also not desirable.) Note also, that the flags are
tried in the order in which they are listed in the package description file. It is
therefore possible to help Cabal a little by listing the flags that are most likely to
cause problems last, so that an alternative for those flags is tried first.

Future Work

Even though Cabal configurations solved an important issue, there is still much,
much work to do. Package management is a complex and loosely-defined problem
with many challenges and many design decisions that need to be made. Here are
a few of the problems the Cabal developers are still working on:
Cabal Frontends. The aforementioned cabal-install is available on Hackage and

makes installing packages from Hackage very easy. A graphical tool, that is
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more friendly towards newcomers (or Windows users) would be very useful.
Package Dependency Testing. At the moment, most packages describe dependen-

cies in a very simple way. They usually just list the package name or a mini-
mum version of the package. To make sure that packages are built correctly
and work as expected, however, it is necessary that Cabal has a reliable way
to pick the right dependencies. A versioning policy can help describe when
a new release of package might possibly break dependent packages, but it
might also inhibit the adoption of new versions since dependencies must first
“bless” the new version of their dependency. The final solution must be a
trade-off between several such issues. The discussion is ongoing [10, 11].

Module Dependency Tracking. At the moment, Cabal relies on GHC’s --make

feature to build all dependent modules. This works well enough, but is not
portable and doesn’t deal well with things like invoking pre-processors. Many
computers today are multi-core, so we’d also like to take advantage of this
to speed up compilaton of packages. To solve all those issues, Cabal will
eventually contain a rule-driven engine, similar to the make tool, and will
be able to track module dependencies and compile all modules individually
and, wherever possible, in parallel. Unfortunately, the details are very tricky
and hard to get right.3

Some packages with complex build requirements, e.g., gtk2hs [13], still cannot be
built using Cabal. Ultimately, Cabal tries to support building the vast majority,
if not all, of the Haskell packages people write.

Summary

Cabal is a useful tool for every Haskell hacker and is being improved continuously.
Designing a package tool that aims to be useful to so many people is hard, but
hacking on it is rewarding – you will definitely get user feedback!

Thanks

I’d like to thank Björn Bringert for pointing me to this Summer of Code project
suggestion, Isaac Potoczny-Jones for being my mentor, and most of all Duncan
Coutts for being very responsive about discussions and co-hacking on Cabal. Many
thanks also to all those who sent feedback through the mailing lists and IRC
channels.

3A recent mailing list message describes the current status [12].
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Darcs Patch Theory

by Jason Dagit 〈dagit@codersbase.com〉

Darcs is a free, open source source code revision control system implemented in
Haskell. One of its distinguishing features is the theory of patches, that provides
the theoretical foundations on which the tool is built. In this article, I will try intro-
duces the basic ideas and operations of patch theory. We setup the conflict problem
and we hope to explain the solution in later installments of The Monad.Reader.

Basic Elements of Patch Theory

The goal of patch theory is to describe changes to a repository. Although patch
theory could be treated purely as a mathematical abstraction, we focus on the
details that relate to Darcs [1]. Please pay close attention to the relationship
between changes and patches.

Definition 1. A repository is a set of changes.

Here we specifically mean a mathematical set; we mean to emphasize that the
order of the elements is unimportant. This implies that merging two repositories
should simply be the union of those sets.

Definition 2. In the abstract sense, a change is just an element of a repository. In
Darcs, each change modifies the working copy or other changes.

Two changes are the same if they have the same effect, but it is important to
notice that we cannot compare two changes unless they modify the same thing,
which is to say they originate from identical states.

Definition 3. A context is the state after some number of changes have been
added.

In order to manipulate changes, Darcs stores each change using a patch.
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Definition 4. A patch is a fixed and concrete representation of a change. All
discussions of patches in this document assume the representation used by Darcs,
unless noted otherwise.

Each patch has two contexts associated with it. There is the context that the
patch originates from and the context resulting from the patch. Given a set of
patches we can only form sequences from the patches if their contexts match up.
Additionally, we can only apply the changes represented by a patch if we have our
data in the context required by the patch. Initially, these two requirements seem
to go against the definition of a repository.

We want our repositories to store unordered sets of changes, but we have just
stated that given a set of patches (which represent our changes) that there is an
implicit order we must adhere to in order to apply the patches.

The Famous Commute

One way to get around the implicit ordering constraint described above is to create
new representations of each change (i.e., new patches) so that they are in a different
order.

Before we explain commute, here is an introduction to our notation. In the
following example we use capital letters to represent patches and lower cased super
scripts are used to mark the contexts.

To denote the patch A from context o to a, we would write oAa. A repository
might contain two patches, oAa and aBb, in which case we could put them in
a sequence and simply write, oAaBb. Note that since the ending context of A
matches the starting context of B we only write the ‘a’ once. Often when the
contexts are understood, they are omitted and just the patches are named.

Suppose we had two changes, C1 and C2 such that oAa
1 and eAc

2 both represent C1

and, similarly, both oBe
1 and aBd

2 represent C2. We could then write two different
sequences of patches for our two changes. We could write,

oAa
1B

d
2

or,
oBe

1A
c
2.

Since both sequences represent having both changes their final contexts are actually
the same and so we have

c = d.

Patch theory defines a swap operation between two patches with suitable con-
texts called commute. The purpose of commute is to take two patches, which can
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be placed in sequence, and create different representations of each patch so that
the sequence order is reversed. Using the example above, it is possible to switch
between the two sequences by commuting the two patches.

Not all patches can have their order reversed by the commute operation. For
example, suppose one change creates a file and another change modifies the con-
tents of that file. Since you cannot modify the contents of a file that hasn’t been
created, all patches representing modifications to the file must come after the patch
that creates the file. When commute fails for this reason, we say that one patch
depends on the other.

There are also several properties that each patch type must satisfy, but not all
are listed here. For example, we must be able to invert each patch, or undo it’s
change. The inverse of patch B is denoted, B.

Additionally, there are three properties which combined give an elegant way
to merge two patches, but these properties are beyond the scope of this article.
Instead of listing the properties, we give a simple example of how merge works.

Suppose we have the patches

oAa and oBb

and we would like to merge them. This requires us to find patch representations
which can be put in sequence. Suppose we apply the inverse of A to get

oAaA
o
.

By the (unlisted) properties of the commute function we know that when commute
succeeds we can commute

aA
o
Bb

to get
aBc

1A
b

1.

So now we can write the following sequence of patches

oAaBc
1A

b

1.

We can always remove patches from the end of a sequence by just throwing it
away. We can remove patch from the right end to get the merged sequence,

oAaBc
1.

The reader is encourage to check the Wikibook [2] for a clear, through and easy-
to-read explanation of the merge algorithm. The reader should also verify that the
patches can be merged in the other order, e.g. starting with patch B.
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The Infamous Conflict

In the previous section, during the merge we assumed that the commutes always
succeeded. This is not always the case. When we are performing a merge and two
patches fail to commute, we say that the patches conflict with each other. This
could happen if the two patches try to modify the same line of a file. So far we
have two different times when commute can fail and both times means something
different: in the context of a merge, it means the patches are conflicting; but when
the patches are already in a sequence and fail to commute, it means there is a
dependency between the patches. This difference is subtle but significant.

The conflict problem is how to retain the property that repositories are an
unordered set of changes, but merging these sets can fail to produce a set of
patches that can be ordered sequentially (i.e., merged).

There seems to be two main ways of solving the problem. One way is to hold
all of the patches in a sequence using special patches to note the places where the
sequence forks (current darcs does this with mergers and conflictors but the design
is flawed). The other approach is to store all the patches in the repository and to
“disable” some patches until the conflicts go away. The latter approach is easier
conceptually, but requires recomputing the sequence of patches more frequently.
For the Summer of Code we chose to implement the latter approach.

The conflict problem is worsened by scenarios where the user wants a patch that
depends on a “disabled” patch. This requires Darcs to store all patches it has seen
and have a way to determine when a new patch represents a change that has already
been “disabled” (possibly by different patch representing the same change). This
requirement led us to implement a“remerge”algorithm which is capable of taking a
sequence of disabled patches and enabling as many of the patches as possible. This
way it is possible to merge two repositories by disabling any possibly conflicting
patches and then re-enabling some of them. We also added new patch types to
allow the user to specify which changes should be active and which ones should be
disabled.
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TaiChi: how to check your types
with serenity

by Mathieu Boespflug 〈mboes@tweag.net〉

The summer of 2007 was to be about hacking nhc98 and Yhc, two Haskell 98
compilers with common ancestry and some common code. My project focused on
the front-end and, in particular, the type checker. In any Haskell compiler, the
typechecker must infer the types of all expressions and subexpressions in a program
with respect to the primitives of Haskell and other declarations. This information
is useful for the later phases of the compiler, but more importantly, it enforces the
static semantics of Haskell: rejecting any ill-typed program and hopefully giving
helpful information to the user about why the program is ill-typed and how to fix
it.

Unfortunately, the typechecker for nhc98 and Yhc hasn’t kept up with the pace
of the development of other Haskell compilers, and sometimes works in a rather
obscure or unusual manner. The error messages can be quite unhelpful; sometimes
the typechecker may even go wrong!

Enter TaiChi: a framework for writing typecheckers. The goal is to reduce
the implementation of typechecking to a small, simple and clearly defined set of
pluggable components. We try to make experimentation with new type systems as
simple as possible and hopefully make the maintenance of a compiler a bit easier.
We aim to provide good type error messages. Efficiency is not a primary concern.

The underpinning of TaiChi is the HM(X) theoretical framework set forward
by Sulzmann et al. HM(X) is a general framework for typechecking Hindley-
Milner style type systems. It describes type checking as a constraint satisfaction
problem. It is general enough to handle numerous variations and extensions of
the polymorphic λ-calculus. In particular, it is possible to specify the semantics
of Haskell’s type classes in terms of constraint handling rules (CHR), the usage
of which we’ll present later in this article. The main benefit of this approach is
to support uniform construction of type inference algorithms, easing maintenance
and experimentation with new type system extensions.
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But first let’s take a closer look to the formalism that lies at the heart of the
framework: constraint logic programming. We will then give a feel of how to
write a basic typechecker using TaiChi for your favourite ML-like or Haskell-like
language (your target language) and we’ll try to give an idea of TaiChi’s current
status and where it is heading towards.

Constraint logic programming

We view typechecking as an exercise in logic programming. The first ingredient in
a logic program is the term language to manipulate. We take a term to be either
a variable or an application of a function to a number of terms. The CTerm data
type below describes the types that we will work with.

type Name = String
data CTerm = TVar Name
| TApp Function [CTerm ]

The TVar constructor corresponds to type variables; the TApp application cor-
responds to the application of a type constructor to its arguments.

Functions can be built using the Func constructors Func, that we have omitted.
The Func constructor takes a name and an arity. Here are two example CTerm
combinators that we will use to write the types of functions and tuples respectively:

x
.→ y = TApp (Func "->" 2) [x , y ]

triple x y z = TApp (Func "Tuple3" 3) [x , y , z ]

In essence, a function is the same as Prolog structures. For purposes of this
presentation terms are first-order, just like in Prolog. Now we can think of a
constraint logic program as a set of clauses relating variables in a term, constraining
the possible values those variables can be instantiated with. We define a constraint
inductively as an application of a predicate to some terms or a conjunction of two
constraints:

data Constraint = CTrue
| CApp Predicate [CTerm ]
| CConj Constraint Constraint
| CExist [CTerm ] Constraint -- Invariant: terms are unique vars.

Note that variables can be existentially quantified in constraints. The Predicate
type has a Pred constructor, very similar to the Func constructor we have seen
above.

18
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When we collect constraints on types, for instance, when we carry out Hindley-
Milner type inference, we’ll usually only need the equality predicate:

a
.
= b = CApp (Pred "=" 2) [a, b ]

Of course, we are free to add more constraints, using the Pred constructor.
We combine constraints to form a larger constraint, as in the following (where

Bool and [ ] are constants):

t3
.→ t3

.
= Bool → t2

∧ t5
.→ t5

.
= Bool

.→ t4
∧ g (t0 , t1 )
∧ t1

.
= [ ]

∧ tuple2 (t2 , t4 )

With a representation of constraints in our toolbox, we’d like a way to reason
about these constraints. For one, we would like to simplify and possibly solve the
constraints. For this it is convenient to wrap up a constraint into a package, with
a name and a set of variables that can be instantiated with arbitrary terms to form
a new constraint. This is expressed by a rule, with a head and body as constituent
parts, for reasons that will become clear.

data Rule = Head :−Goal
data Head = Head Predicate [CTerm ]
data Goal = GAtom Predicate [CTerm ]
| GCons Constraint
| GConj Goal Goal

You can recognize the structure of a rule as similar to the definition of a Prolog
predicate. A rule does indeed fulfill a similar role. Note that the body of a rule
is of type Goal , rather than a constraint. This is because a rule can, in addition
to holding a constraint, ‘call’ another rule, with the same semantics as in Prolog.
Therefore, we define a logic program as follows:

type Program = [Rule ]

Given a logic program (i.e., a set of rules) P , one may ask to solve a given goal,
or in Prolog terms, perform a query.

solve :: Program → Goal → Answer

To solve a CLP goal is to recursively substitute any instance of the head of a
rule in the goal with the body of the rule, renaming free variables if necessary to
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avoid name clashes, repeating the process until all that is left is a conjunction of
constraints. More precisely, the goal is rewritten by SLD-resolution with respect
to P , just as in Prolog.

An example derivation would be as follows. Given the program

f(t1, t2) :− t1
.
= Bool ∧ t2

.
= Int

g(u1, u2) :− u1
.
= u2 ∧ f(Bool, u2) ∧ u1

.
= u2

.→ u2

rewriting the goal g(a, Int) where a is a variable yields

g(a, Int)  u1
.
= a ∧ u2

.
= Int ∧ u1

.
= u2 ∧ f(Bool, u2) ∧ u1

.
= Int

 u1
.
= a ∧ u2

.
= Int ∧ u1

.
= u2 ∧ t1

.
= Bool ∧ t2

.
= u2∧

t1
.
= Bool ∧ t2

.
= Int ∧ u1

.
= Int

Of course this last set of constraints on a can be simplified to

a
.
= Bool ∧ a

.
= Int

This set of constraints cannot be satisfied.

Introducing the TC monad

Given facilities for constraint logic programming and basic functions on variables
such as finding free variables, renaming and so forth, we can already perform basic
typechecking. But before we demonstrate this in more detail, we will write some
additional machinery to keep track of type environments, report errors to the user
and generate fresh variable names. Enter the TC monad, a thin layer wrapped
around most of the TaiChi library.

Our goal here is to define a base monad including some basic plumbing to help
type checking, on top of which we can build additional mechanisms. It would be
very convenient to use GHC’s newtype deriving here, and get many definitions for
free, but this feature is not available in all Haskell compilers. We layer monad
transformers much like in the mtl library,1 but the approach here is a bit more
general.

The TC monad is defined as follows, using an assemblage of monad transformers.
The idea is to make it trivial to add more transformers as necessary.

newtype TC v ty a = TC{unTC :: StateT [v ] (ReaderT (Env v ty)
(Either String))a }

Add a few more trivial instance definitions and we already have a monad from
which we can generate fresh variables, set local type environments and abort due

1http://hackage.haskell.org/cgi-bin/hackage-scripts/package/mtl-1.0
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to an error. Fresh variables are modelled by seeding the state in the monad with
an infinite list of names. Each time a new name is required, we pop the head off
the list and update the state accordingly. This functionality is partially captured
in the following class, of which TC is an instance:

class Monad m ⇒ MonadTC m v ty r | m → v ,m → ty ,m → r where
environment :: m (Env v ty)
setEnvironment :: Env v ty → m a → m a
lookupVar :: Eq v ⇒ v → m (Maybe ty)
withBinding :: Eq v ⇒ (v , ty)→ m a → m a
freshVar :: m v
split :: m a → m ()
errorTC :: TCError → m a
. . .

Note the r type variable in the head of the class definition. This is used to
layer additional monad transformers on top of TC. Monad transformers offer a lift
method to promote actions of a monad M to actions of a new monad composed of
M and some monad transformer T. Additional calls to lift will take the action even
higher up an arbitrary size stack of monad transformers. But lift has the limitation
that it does not cope with ‘higher-order’ monadic actions nicely, by which we mean
actions that take actions as arguments, such as withBinding above.

Given instances of all methods of MonadTC , given in

instance MonadTC (TC v ty) v ty () where
. . .

we would like to get instances of these methods for any other monad that we layer
on top of TC for free, with the guarantee that these methods will have the same
behaviour in the layered monad as they do in the TC monad. Given a function
liftTC :: TC v ty a → m a this is trivial for most methods above: by default
define them in terms of liftTC . But how can we do this for methods that take
monadic actions as arguments? We need some way of peeling off the layered monad
transformer to obtain the TC monad underneath, modify it, then wrap it back up
with the monad transformer. This is where dropTC :: m a → r → TC v ty a
comes in, the inverse of liftTC in some sense.

Notice the r argument. This is because, in a purely functional language, in
general monads carry around implicit state. We could term this input state, for
monads that allow actions to inherit state but never produce any, and output
state for the converse. The Reader monad is an example of a monad with input
state and the Writer monad an example of a monad with output state. The State
monad has both input and output state. So to destruct the outer layer, we’ll need
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in general to provide some input state, such as the current environment to run the
Reader monad. To reconstruct the outer layer such as it was before, we can simply
use liftTC , but whose signature we need to modify slightly. We want liftTC as an
inverse to dropTC , so we add the two methods to MonadTC with the following
signatures:

instance MonadTC m v ty r | m → v ,m → ty ,m → r where
liftTC :: (r → TC v ty a)→ m a
dropTC :: m a → (r → TC v ty a)
. . .

The redundant parentheses in dropTC ’s signature are just to underline the sym-
metry between the two methods. All other methods have the same signatures as
previously. As an example, a default implementation of withBinding would be

withBinding :: Eq v ⇒ (v , ty)→ m a → m a
withBinding b m = liftTC (λr → withBinding b (dropTC m r))

Of course this approach is not possible with arbitrary monads. It goes without
saying that layering the IO monad on top of TC in this manner is not possible.
This approach only works for monads that are in some sense ‘runnable,’ from which
we can extract a value and some hidden state. Note also that liftTC and dropTC
as defined above only handle input state, though they can readily be extended
to handle output state as well, hence allowing one to add a StateT layer. For
other monads, one can always give explicit definitions for the higher-order monadic
actions that MonadTC defines, since the default definitions for these methods will
not suffice. The ability to add new monadic layers easily will be very useful: it
makes the creation of new monads cheap and safe.

Writing some type rules

With all the basic infrastructure in place, we can now move on to the core task of
writing a new type system: defining the type rules. What’s more, writing these
rules is all it takes to get the basic functionality of a type checker for your target
language. Let’s illustrate this with λHM , a tiny λ-calculus with polymorphic types.

data Expr = EVar Name
| EAbs Expr Expr
| EApp Expr Expr
| ELet Expr Expr Expr
| ERec Expr Expr
| ETuple [Expr ]
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Typechecking using CLP consists of at least three phases. First we need to work
out the type of an expression, defined recursively on the structure of expressions
in the target language. Such a definition is given formally by type rules.2 During
typechecking, we must also accumulate constraints relating the inferred types of
all sub-expressions to each other. We can define how this is done for the target
language by means of a relation Γ, E, e `CG (G T ), where Γ is a set of assumptions
on the types of λ-bound variables in the current environment and G, T are respec-
tively a conjunction of constraints and the type of e. Finally, E is used to keep
track of those variables that are let-bound in the current scope. Table 1 shows the
formal syntax driven definition of this relation. This style of definition may look
scary at first, but is rather straightforward once you understand the mathematical
notation. In a minute, we will see how all these symbols can be translated to
Haskell.

Applying the constraints generated by `CG to a type variable standing for the
type of the input expression, solving them, finding the most general unifier and
appropriately quantifying any free variables yields the principal type (or most
general type) of the expression.

We can think of the constraint generation relation `CG as a simple function
taking as input some environments and an expression. Of course it is much more
convenient and less error prone to hide the environments in a monad and get the
monad to handle fresh variable generation. In general, we let the user use any
monad he wishes and provide the following interface to type rules of the object
language.

class TypeRules e m | e → m where
genConstraints :: e → m (CLP .Goal ,CLP .CTerm)
genCLPRules :: e → m CLP .Program

By way of example, to typecheck expressions of λHM , we’ll make use of the CRGen
monad, a simple extension of TC : add an extra environment for let-bound vari-
ables.

newtype CRGen v a = CRGen{unCRGen :: ReaderT [v ] (TC v CTerm) a }
instance MonadTC (CRGen v) v CTerm [v ] where

liftTC = CRGen ◦ ReaderT
dropTC m = runReaderT (unCRGen m)

instance Monad (CRGen v) where
return a = CRGen (return a)
m >>= k = CRGen (unCRGen m >>= λx → unCRGen (k x ))

2Type rules omitted here since they are the usual ones for the polymorphic λ-calculus. They
can be found in the literature describing HM(X) [1]
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(CGVar-x)
(x : t) ∈ Γ

E, Γ, x `CG (True t)

(CGVar-f)
f ∈ E t, l fresh

E, [x1 : t1, . . . , xn : tn], f `CG (f(t, l) ∧ l = [t1, . . . , tn] t)

(CGAbs)
E, Γ ++ [x : t1], e `CG (G t2) t1 fresh

E, Γ, λx.e `CG (G t1 → t2)

(CGApp)
E, Γ, e1 `CG (G1 t1) E, Γ, e2 `CG (G2 t2) t fresh

E, Γ, e1 e2 `CG (G1 ∧G2 ∧ t1 = t2 → t t)

(CGLet)

E ∪ {f}, Γ, e2 `CG (G t)

Γ = [x1 : t1, . . . , xn : tn] a, l fresh

E, Γ, let f = e1 in e2 `CG (G ∧ f(a, l) ∧ l = [t1, . . . , tn] t)

(CGRec)
E, Γ ++ [f : a], e `CG (G t) a fresh

E, Γ, rec f in e `CG (G ∧ a = t t)

Figure 1: Formal definition of constraint generation relation

We will need a few accessor functions useful in the definition of rules.

withLetBinding :: Eq v ⇒ v → CRGen v a → CRGen v a
withLamBinding :: Eq v ⇒ (v ,CTerm)→ CRGen v a → CRGen v a

lamEnvironment :: CRGen v (Env v CTerm)
setLamEnvironment :: Env v CTerm → CRGen v a → CRGen v a

isLetBound :: Eq v ⇒ v → CRGen v Bool

freshTyVar , freshEnvVar :: CRGen v CTerm

We can give a rather direct implementation of the rules defining the behaviour
of the typechecker for λHM in Haskell. To do so, we must write the following
instance definition.

instance TypeRules HM .Expr (CRGen HM .Name) where
genConstraints = genC
genCLPRules = genR
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(RGVar) E, Γ, v `RG ∅

(RGAbs)
E, Γ ++ [x : t], e `RG P t fresh

E, Γ, λx.e `RG P

(RGApp)
E, Γ, e1 `RG P1 E, Γ, e2 `RG P2

E, Γ, e1 e2 `RG P1 ∪ P2

(RGLet)

E, Γ, e1 `CG (G t) Γ = [x1 : t1, . . . , xn : tn] l, r fresh

E, Γ, e1 `RG P1 E ∪ {f}, Γ, e2 `RG P2

P = P1 ∪ P2 ∪ {f(t, l) :−G ∧ l = [t1, . . . , t2]}
E, Γ, let f = e1 in e2 `RG P

(RGRec)
E, Γ, e `RG P

E, Γ, rec f in e `RG P

Figure 2: Formal definition of CLP rule generation relation (naive but mostly
correct version)

We must now define the genC and genR functions that generate the constraints
and rules respectively. The most important parts of the the genC function can be
found in Figure 4. The focus here is on the definitions for λ-abstractions, appli-
cations and let declarations – we have left out several of the less interesting cases.
The full definition is in TaiChi/HM/TypeRules.hs in the TaiChi source repository.
Notice how closely the implementation mirrors the type rules in Figure 1.

Now each let definition induces a CLP rule. Before we solve the constraints
collected by genConstraints , it is necessary to collect all such rules in the input
expression. The CLP rules of an expression are given by the relation `RG, formally
defined in Figure 2.

The formal specification, and accordingly the implementation of genR of `RG,
are both rather straightforward. The definition of genR is listed in Figure 4. The
only tricky part is the case of the let-binding, where genConstraints is called on
the right hand side of a let-definition to infer the type and associated constraints
of the let-bound symbol. In all the other cases, it is reassuring to see that the
implementation of genR closely mirrors the formal rules in Figure 2. We’ll now
consider a few examples, before discussing how to deal with type classes.
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genC :: HM .Expr → CRGen HM .Name (CLP .Goal ,CLP .CTerm)
genC (EAbs (EVar x ) e) = do

t1 ← freshTyVar
(goal , t2 )← withLamBinding (x , t1 ) (genC e)
return (goal , t1

.→ t2 )
genC (EApp e1 e2 ) = do

t ← freshTyVar
(g1 , t1 )← genC e1
(g2 , t2 )← genC e2
return (conjunction [g1 , g2 ,GCons (t1

.
= t2

.→ t)], t)
genC (ELet (EVar f ) src target) = do

a ← freshTyVar
l ← freshTyVar
(goal , t)← withLetBinding f (genC target)
tys ← mkLamTypes
let g = conjunction [goal

,GAtom (Pred f 2) [a, l ]
,GCons (l

.
= tys)]

return (g , t)
. . .

Figure 3: The definition of the genC function
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genR :: Expr → CRGen HM .Name CLP .Program
genR (EVar x ) = return CLP .nullProgram
genR (EAbs (EVar x ) e) = do

t ← freshTyVar
prog ← withLamBinding (x , t) (genR e)
return prog

genR (EApp e1 e2 ) = do
p1 ← (genR e1 )
p2 ← (genR e2 )
return (p1 ++ p2 )

genR (ELet (EVar f ) src target) = do
(goal , srcTy)← genConstraints src
tys ← mkLamTypes
l ← freshTyVar
ty ← freshTyVar
p1 ← genR src
p2 ← withLetBinding f (genR target)
let prog = p1 ++ p2 ++ [(Head (Pred (identify f ) 2) [ty , l ])

:−conjunction [GCons (ty
.
= srcTy)

, goal
,GCons (l

.
= tys)]]

return prog
genR (ERec f e) = genR e

Figure 4: The definition of the genR function
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A small λHM example

If you are in the shoes of a language designer trying to get a quick and dirty type
system going with little fuss, writing the above constraint and CLP rule generation
rules is all you need to do. A series of small building blocks are available in
TaiChi/TypeCheck/ which you can use for common tasks, such as inferring the
type of an arbitrary expression, or typechecking a set of top-level declarations in
a module. Look inside TypeCheck/Expression.hs to find tcExpression:

tcExpression :: (TypeRules t (CRGen v), Identify v Name)⇒
Env v TyScheme -- The types of all primitives.
→ Env v CTerm -- The types of all lambda-bound variables in scope.
→ [v ] -- The infinite supply of fresh variables.
→ t
→ Either TCError TyScheme

This function will work with any abstract syntax tree over which type rules have
been defined and for which symbols in the language can be mapped to strings. It
will indicate failure of typechecking, but with only the type rules to go by, the
type error messages will be rather cryptic and unhelpful.

Let’s have a look at a simple example. Let test1 denote the expression

test1 = λy → let f x = (y , x ) in (f True, f y)

We can find the type of this expression assuming that True is of type Bool .

ghci> tcExpression [] [] freshVars test1

Right (TSContext [t0] t0 -> tuple2(tuple2(t0, Bool),

tuple2(t0, t0)))

That is to say,
test1 :: forall α. α→ ((α, Bool), (α, α))

And when introducing a type error in the program:

ghci> tcExpression [] [] freshVars test2

Left (t3 = t4 , t3 = Bool , t4 = Bool -> t9)

where

test2 = λy → let f = True in (f True, f y)

A Right value tells us that typechecking succeeded and gives the inferred type. A
Left value means that on the contrary typechecking failed. In the latter case TaiChi
makes a small attempt at giving a hint of where the type error lies by returning
a minimal unsatisfiable subset of constraints, a set of conflicting constraints such
that removing any one constraint makes the set non-conflicting. In future work
this set will be used as a basis for giving more helpful error messages.
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Typing with classes

So far the only constraints we have used are equality constraints. This was suffi-
cient for a basic Hindley-Milner type system. We can add more constraint pred-
icates, to express richer systems, but one issue is that it is necessary to define in
Haskell the meaning of any new constraint predicate we introduce. When solv-
ing constraints, encountering an equality predicate means unify both sides. Other
predicates will mean something else. A very convenient and powerful way of spec-
ifying the semantics of new constraint predicates is to employ constraint handling
rules. CHR’s typically have two forms: simplification rules and propagation rules.

simplification r1 ≡ c1, . . . , cn ⇐⇒ d1, . . . , dm

propagation r2 ≡ c1, . . . , cn =⇒ d1, . . . , dm

where r1, r2 are rule names, c1, . . . , cn are CHR constraints and d1, . . . , dm are
CHR or CLP constraints.

A simplification rule is to be interpreted as follows. Given a bag of constraints B,
if there are constraints matching the patterns in the head of the rule then remove
those constraints and replace them with the body of the rule (right hand side of
⇐⇒). A propagation rule is interpreted the same way, save for the fact that for
such a rule matching constraints are not removed from B.3

A set of constraint handling rules taken together form a CHR program, and
this program tells us how to manipulate constraints to form new constraints and
simplify them. It turns out that as far as typechecking is concerned Haskell type
classes can be mapped to an equivalent CHR program. The idea is that for each
occurrence of a method of some type class in some expression, such as (≡) of
class Eq or show of class Show , we must generate some additional constraints
that we’ll call class constraints (e.g. Eq Int or Show a). These constraints are
witness to the usage of such methods and restrict the inferred type with additional
conditions. For instance if the user defines f x y = x ≡ y then f can only be
applied to arguments of some type t if t is an instance of Eq t . In Haskell we
indicate this extra condition by denoting the type of f :: Eq t ⇒ t → t → Bool .
Now if we instantiate t to Int , for instance by giving an explicit signature for f in
the program, the Eq Int context becomes redundant and we omit it, because and
instance Eq Int is defined in the Prelude.

This inspires the following natural encoding of type classes as CHR’s. On the
left, we write the Haskell code; on the right, we write the corresponding constraint.

class C ⇒ TC a where m :: D ⇒ t TC a =⇒ C
instance E ⇒ TC t TC t⇐⇒ E

3This is a very swift overview of CHR’s. The interested reader is referred to the literature about
HM(X) [2] for more details.
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For the Ord class, this would give:

class Eq a ⇒ Ord a where . . . Eq a =⇒ True
instance Ord Int where . . . Ord a =⇒ Eq a
instance Ord a ⇒ Ord [a ] where . . . Ord [a]⇐⇒ Ord a
instance Ord a ⇒ Ord Bool where . . . Ord Bool⇐⇒ True

Extra CLP rules are generated mirroring the signatures of class methods. In
general a method m of class TC will induce a CLP rule of the form given below.

m :: D ⇒ τ `RG m (t) :− t
.
= τ ∧ D ∧ TC a

In the above examples we would therefore have

(≡) :: a → a → Bool ≡ (t) :− (t
.
= a→ a→ Bool) ∧ Eq a

compare :: a → a → Ordering compare(t) :−
(t

.
= a→ a→ a→ Bool) ∧Ord a

For the interested reader, a more adequate treatment of the use of CHR’s for
type inference in the presence of type classes is given elsewhere [3]. In TaiChi,
the presence of CHR’s means that the solving of constraints must be interleaved
with calls to the CHR solver to iteratively simplify and rewrite constraints until
no longer possible. We must therefore employ the tcExpressionCHR function, the
analog of tcExpression with extra logic to handle CHR’s.

Conclusion

TaiChi is lightweight and lays the groundwork for writing a typechecker succinctly,
but still allows a lot of flexibility regarding the kind of type system you wish
to implement. The HM(X) theoretical framework is a very powerful one indeed,
allowing the expression of a rich set of extensions to the traditional Hindley-Milner
type system. We have only considered here the addition of CHR’s to the system
to model Haskell style type classes, but it is also possible with CHR’s to model
multi-parameter type classes, functional dependencies, existential types, GADTs
and many other familiar type system extensions. Moreover, TaiChi sports some
rudimentary notions of model theory, allowing one to vary the constraint domain
and solver to use, for instance to create useless if funny type systems with built-in
notions of arithmetic over reals.

Currently TaiChi only provides a very rudimentary framework. Type errors
are not handled in a user friendly way yet and some algorithms are very naive.
Constraint rules have been implemented for most of Haskell 98 and are currently
being integrated into Yhc. I plan to write support for nice error messages, using an
approach directly benefiting from the principled use of constraints exposed here. I
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also plan to substantially reduce the amount of work required to write constraint
rules for common type system and language features. Further improvements will
focus on fully implementing type classes as they are found in GHC and further
type extensions. This will enable Yhc, nhc98 and any other compiler that decides
to make use of TaiChi, to make quickly support many type system features that
can be found in some other compilers.

This article is a small account of how to program using TaiChi, a project in
a still nascent stage. I hope that this overview has given you a feel for how to
program using TaiChi and de-mystified typecheckers somewhat. Type systems are
not black magic, and set in the right theoretical framework understanding them
can be rather straightforward. If you are interested, TaiChi can sure do with an
extra pair of hands! The darcs repository is available at:

http://code.haskell.org/~mboes/taichi/
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