
Faster persistent data structures through
hashing

Johan Tibell
johan.tibell@gmail.com

2011-09-23



Motivating problem: Twitter data analysis

I'm computing a communication graph from Twitter
data and then scan it daily to allocate social capital to
nodes behaving in a good karmic manner. The graph
is culled from 100 million tweets and has about 3
million nodes.

We need a data structure that is
I fast when used with string keys, and
I doesn't use too much memory.



Persistent maps in Haskell

I Data.Map is the most commonly used map type.
I It's implemented using size balanced trees and is

representative of the performance of other binary tree
implementations.

I Keys can be of any type, as long as values of the type can
be ordered.



Real world performance of Data.Map

I Good in theory: no more than O(log n) comparisons.
I Not great in practice: up to O(log n) comparisons!
I Many common types are expensive to compare e.g
String, ByteString, and Text.

I Given a string of length k, we need O(k ∗ log n)
comparisons to look up an entry.



Hash tables

I Hash tables perform well with string keys: O(k) amortized
lookup time for strings of length k.

I However, we want persistent maps, not mutable hash
tables.



Milan Straka's idea: IntMaps as arrays

I We can use hashing without using hash tables!
I Data.IntMap implements a persistent array and is much

faster than Data.Map.
I Use hashing to derive an Int from an arbitrary key.

class Hashable a where
hash :: a -> Int



Collisions are easy to deal with

I IntMap implements a sparse, persistent array of size 232

(or 264).
I Hashing using this many buckets makes collisions rare: for

224 entries we expect about 32,000 single collisions.
I Implication: We can use any old collision handling strategy

(e.g. chaining using linked lists).



HashMap implemented using an IntMap

Naive implementation:
newtype HashMap k v = HashMap (IntMap [(k, v)])

By inlining (``unpacking'') the list and pair constructors we can
save 2 words of memory per key/value pair.



Benchmark: Map vs HashMap

Keys: 212 random 8-byte ByteStrings

Runtime (μs) Runtime
Map HashMap % increase

lookup 1956 916 -53%
insert 3543 1855 -48%

delete 3791 1838 -52%



Can we do better?

I Imperative hash tables still perform better, perhaps there's
room for improvement.

I We still need to perform O(min(W, log n)) Int
comparisons, where W is the number of bits in a word.

I The memory overhead per key/value pair is still high, about
9 words per key/value pair.



Borrowing from our neighbours

I Clojure uses a hash-array mapped trie (HAMT) data
structure to implement persistent maps.

I Described in the paper ``Ideal Hash Trees'' by Bagwell
(2001).

I Originally a mutable data structure implemented in C++.
I Clojure's persistent version was created by Rich Hickey.



Hash-array mapped tries

I Shallow tree with high branching factor.
I Each node, except the leaf nodes, contains an array of up

to 32 elements.
I 5 bits of the hash are used to index the array at each level.
I A clever trick, using bit population count, is used to

represent sparse arrays.



HAMT

BitmapIndexed

Leaf

Hash



The Haskell definition of a HAMT

data HashMap k v
= Empty
| BitmapIndexed !Bitmap !(Array (HashMap k v))
| Leaf !Hash !k v
| Full !(Array (HashMap k v))
| Collision !Hash !(Array (Leaf k v))

type Bitmap = Word
type Hash = Int
data Array a = Array (Array# a)



High performance Haskell programming

Optimized implementation using standard techniques:
I constructor unpacking,
I GHC's new INLINABLE pragma, and
I paying careful attention to strictness.

insert performance still bad (e.g compare to hash tables).



Optimizing insertion

I Most time in insert is spent copying small arrays.
I Array copying is implemented in Haskell and GHC doesn't

apply enough loop optimizations to make it run fast.
I When allocating arrays GHC fills the array with dummy

elements, which are immediately overwritten.



Optimizing insertion: copy less

I Bagwell's original formulation used a fanout of 32.
I A fanout of 16 seems to provide a better trade-off between
lookup and insert performance in our setting.

I Improved performance by 14%



Optimizing insertion: copy faster

I Daniel Peebles and I have implemented a set of new
primops for copying arrays in GHC.

I The implementation generates straight-line code for copies
of statically known small size, and uses a fast memcpy
otherwise.

I Improved performance by 20%



Optimizing insertion: common patterns

I In many cases maps are created in one go from a
sequence of key/value pairs.

I We can optimize for this case by repeatedly mutating the
HAMT and freezing it when we're done.

Keys: 212 random 8-byte ByteStrings

Runtime (%)
fromList/pure 100

fromList/mutating 50



Optimizing lookup: Faster population count

I Tried several bit population count implementations.
I Best speed/memory-use trade-off is a lookup table based

approach.
I Using the POPCNT SSE 4.2 instructions improves the

performance of lookup by 12%.



Benchmark: IntMap-based vs HAMT

Keys: 212 random 8-byte ByteStrings

Runtime (μs) Runtime
IntMap HAMT % increase

lookup 916 477 -48%
insert 1855 1998 8%

delete 1838 2303 25%

The benchmarks don't include the POPCNT optimization, due to
it not being available on many architectures.



Memory usage: IntMap-based
Total: 96 MB, tree: 66MB (220 Int entries)

mem 43,678,549 bytes x seconds Thu Sep 22 13:48 2011

seconds0.0 0.2 0.4 0.6

by
te

s

0M

20M

40M

60M

80M

main:Data.HashMap.Common.Bin

ghc-prim:GHC.Types.I#

main:Data.HashMap.Common.Tip



Memory usage: HAMT
Total: 71MB, tree: 41MB (220 Int entries)

mem 25,805,095 bytes x seconds Thu Sep 22 13:49 2011

seconds0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5

by
te

s

0M

20M

40M

60M

main:Data.HashMap.Base.BitmapIndexed

MUT_ARR_PTRS_FROZEN

main:Data.HashMap.Base.Leaf

ghc-prim:GHC.Types.I#



Summary

Keys: 212 random 8-byte ByteStrings

Runtime (μs) Runtime
Map HAMT % increase

lookup 1956 477 -76%
insert 3543 1998 -44%

delete 3791 2303 -39%


