
Direct modular evaluation of expressions using the monads and type classes in
Haskell

 233

UNIVERSITATEA DIN BACĂU
STUDII ŞI CERCETĂRI ŞTIINŢIFICE
Seria: MATEMATICĂ
Nr. 18 (2008), pag. 233 – 248

DIRECT MODULAR EVALUATION OF EXPRESSIONS USING THE
MONADS AND TYPE CLASSES IN HASKELL

by
DAN POPA

 Abstract. During last decade, the expression evaluators and the
list monad had attracted both mathematicians (especially from the field of
Category Theory) and computer scientists. For the last group, the main kind of
applications comes from the field of DSL interpretation. As a consequence of
our research, we are able to introduce a new kind of modular tree-less
expression evaluator, which can be build by importing modular components
into a main Haskell program. In order to keep the parser of the DSL modular,
parser combinators from ParseLib [Hutton G., Meijer E., (1998)] was used. In
order to keep the source and the implicit syntax tree modular we have replace
the data constructors by regular functions over the list monad, inspired by an
idea from Haskell Report [Peyton Jones S. (editor) (2002)]: data constructors
are in fact just simple functions. This gave us the idea of the replacement of
data constructors with functions over monadic actions called by us
pseudoconstructors. The modular evaluator was written in do-notation, on the
idea that expressions should evaluate them-self nor by the help of an interpret-
function as in some papers like [Sheard T.; Benaissa Z. ; Pasalic E. (1999)]
and others. As a consequence, the useful data declarations which usually
appears in DSL implementations are completely missing, shortening the
source and reducing the work of the programmer. A new vision of monadic
semantics is now introduced. The semantics is not a function:interp :: Term ->
Environment -> Monad but more likely a sort of Monad -> Monad -> ...
Monad specification in contrast with the papers [Wadler P. (1992-1995)] .

Key words and phrases: Modular Monadic Interpreters, Type Classes,
Haskell.
(2000) Mathematics Subject Classification: 68N20, 18-04.

D. POPA

 234

 Let's note the idea and definition of pseudoconstructors functions over
monadic actions. The pseudoconstructors are replacing the data values
constructors from the right side of a data declaration. The paper was accepted
as a talk by Anglo Hasekell 2008 organizers.

1. Introduction
 Bigger interpreters and/or compilers has to be serviced from time to
time, as the language itself evolves by versioning. On the other hand,
compilers and interpreters are a sort of strong connected systems [Zenger M.
(2004), Odersky M, Zenger M (2005)], having their pieces strongly bind
together. For decades, modular adaptable languages and compilers or
interpreters were a sort of Saint Grail of the computer scientists community.
The main problem was that we usually can not modify some parts of the
system without the needs of rewriting other parts of it . Examples: If a fixed
lookahead grammar is modified by adding a simple (but uninspired) rule, the
so called "first" and "follow" sets have to be computed again and a monolithic
parser have to be build again. The problem was finally solved by the
introduction of monadic parser combinators in [Hutton G., Meijer E., (1998)] .
The story of parser combinators is classified in [Hudak,P; Hughes,J; Peyton
Jones S, Wadler, P, (2007)] as a successful story. Same problems were still
encountered when dealing with the semantics. In order to modify the semantic
of the language, all (or almost all) the recursive definitions of it have to be
rewritten. No modularity here,too. The problem of modular semantics was
solved by D.Espinosa in his PhD thesis, [Espinosa D. (1995)] using modular
monadic semantics written in Scheme. The monad laws becomes the support
of the do-notation (in Haskell) and connecting them with the papers of
[Wadler P. (1992-1995)] the way of the monadic interpretation of trees in do-
notation was open. Languages and DSL-s was implementing in this way,
including the Perl 6. [Tang. A; (2005)]. But the syntax trees are still used
and, because the data declaration in Haskell is not modular (as the instance
declarations is) , the whole system is not completely modular.
 To our knowledge, our work, in this paper, shows and marks the first
modular monadic tree-less interpreter. Shockingly enough, although
conventional interpreters and compilers writers states that syntax trees are a
fundamental structure of a language we believe that a different approach is
necessary. Now, we view the parsers from the parser monad as returning usual
functions (over a monad) nor data constructors of some trees. As a
consequence of laziness of the Haskell language, the dynamically produced
structure of the functions calls will work similarly with the tree and will not be

Direct modular evaluation of expressions using the monads and type classes in
Haskell

 235

evaluated (it is still incomplete during the parsing phase) until the right
moment comes. Therefore, we prove that the usual interpretation interp: Term
-> Env -> Term is harmful (in terms of modularization) and can be replaced
by pseudoconstructors defined on monadic values. Motivated by these
observations, a smart methodology for modular tree-less interpreters and
compilers building was developed. This is a direct result of the elimination of
abstract syntax tree declared with data constructors. Next point, the
disadvantage of this type of approach, however, is that some usual syntax
trees processing as the tree optimization have to be embedded somehow in the
pseudoconstructors or inserted somehow between the return of the parser and
the use of our pseudoconstructors. Various kind of operations with terms can
be plugged in the system by simply instantiating the required class of
operators. And we had realized our objectives in a modular, monadic, tree-less
way, therefore highly adaptable.

2. Model
 The "Direct Modular Evaluator of Expressions Using The List Monad
and Type Classes" (DMEEULMTC) relies on one public Haskell library
outlined in the classic famous work [Hutton G., Meijer E., (1998)] in the field
of monadic parsing (and, of course, the list monad). A new one, like Parsec,
described in [Leijen D.; Meijer E.; (2001)] was also used by us with good
results. The monad library is also included. Figure 1 diagrams the conceptual
relationship between our semantic modules and the modular monadic parser
which provide the data pseudoconstructors according with the syntax of the
expression (term or program).

Figure 1: A simple DMEEULMTC tool.
 The main module ParserSumaCifre which uses the Monad and the

D. POPA

 236

ParseLib. The evaluated terms will consist of numbers (MyNum) and two
different kind of operators (ClassPlus and ClassMinus). In every class we
have declared a plug-in which is an instance of the class .The class is giving
the signature of the operator. The instance provides the actual semantics of the
operator. Overloading and type check are supported, both.
 There is a huge set of references concerning interpreters and evaluators
or virtual machines. The reader may want to check extra references. The list
monad is also a well documented subject. Therefore, the architecture of a
simple DMEEULMTC tool is still not far away of others similar (but not
modular) tools. Any natural expression evaluator or interpretor used by a
client-server technology will clearly require a syntax of the terms or/and
programs and a parser. Our tool is not different from this point of view. We
considered a parsing algorithm based on parser combinators [Hutton G.,
Meijer E., (1998)] or [Leijen D.; Meijer E. ; (2001)] which proved to be
modular. As it is already known known, a parsing system does not require a
syntax tree structure to parse correctly. Our system will produce a structure of
pseudoconstructors (syntactically speaking they all looks like the similar tree
constructors but - manipulates monadic values and – they are not written using
a capital in the beginning of the identifier).
 One of the problems was if we can add other types ? After few
experiments we concluded that other types may be added by including other
modules similarly with MyNum. The extensible architecture of a
DMEEULMTC tool consists of independent semantic specifications for the
operators belonging to one class, several independent classes of operators
related to one (ore more) data-types like MyNum and all this semantic
specification is connected to a modular parser - the application itself.
 The correct semantic behavior of a DMEEULMTC tool and the
semantic errors reported depends on the carefully implementations of the
operators in the class instances (like MyPlusNum). The syntax error reports,
on the other side, depends on the parser combinator library used (better with
Parsec).
 We have ran a set of tests confirming that our architecture is feasible.
Excluding the libraries (Monad and parser combinator library) the architecture
for our system consists of four independent components:
- The main program including the modular parser.
- The set of data types: MyNum, MyFloat, MyChar, My Bool and so...
- A class describing the signature (types and result, monadic packed) for any
kind of operators. (ClassPlus, ClassMinus, ClassMult,ClassDiv end so...)
- Monadic Semantics modules written as instances of the classes above.

Direct modular evaluation of expressions using the monads and type classes in
Haskell

 237

3. From the Idea to the Implementation
3.1 History of aproaching modularity
1) Modular parser = ? The Problem was solved by Parser combinators
are a real success story.
2) Modular trees = ? Nobody seems to try it ! Here is the place were we can
work.
3) Modular implementation of the interpreter = ? Usually (in the papers by ...)
the interpreter is defined as a function working on Terms and Environment
and producing monadic Values.

 interpret :: Term -> Env -> M Value

Such a function is not modular (it can not be decomposed and spread into
different Haskell modules!)
 So, it should be replaced by something else.

3.2. How to obtain the modularity
1) In order to keep the parser of the DSL modular, parser combinators was
used, being a tested solution.
2) In order to keep the source (and the abstract syntax tree) modular we have
replaced the data constructors by regular functions over the list monad,
inspired by an idea of Simon P.J from the [Haskell Report]. He said that data
constructors are in fact just simple functions.
3) This gave us the general idea of the replacement of data constructors by
functions over monadic actions, called by us pseudoconstructors.
 The modular evaluator was written in do-notation, on the idea that
expressions should evaluate them self nor by the help of an interpret-function
as in [Tim Sheard and Abidine. et all].
 As a consequence, the useful data declarations which usually appears
in all DSL implementations are completely missing, shortening the source and
reducing the work of the programmer.

3.3. Tree declarations like this - below - are harmful (from the
modularity point of view)

data Exp = Constant Int
 | Variable String
 | Minus Exp Exp
 | Greater Exp Exp

D. POPA

 238

 | Times Exp Exp
 deriving Show

data Com = Assign String Exp
 | Seq Com Com
 | Cond Exp Com Com
 | While Exp Com
 | Declare String Exp Com
 | Print Exp
 deriving Show

 Adding new variants means to rewrite such declarations, in a way that
it is not modular.

3.4. A new vision of monadic semantics

A new vision of monadic semantics is now introduced. The semantics
is not a function:

interp :: Term -> Environment -> Monad

but more likely a sort of Monad -> Monad -> ... -> Monad

where the name is given by the pseudoconstructor itself. Let's see an example:

Plus :: Exp -> Exp -> Exp

will be replaced by a plus:

plus :: [a] -> [a] -> [a] or a plus :: M a -> M a -> M a (M being any Monad !)

3.5. The data declarations of the trees will be absent, being replaced by
a set of functions.
 Let's see how, using a bigger example:

data Exp = Constant Int
 | Variable String
 | Minus Exp Exp
 | Greater Exp Exp
 | Times Exp Exp

Direct modular evaluation of expressions using the monads and type classes in
Haskell

 239

 This data declarations becomes a set of functions having this set of
signatures:

constant :: Integer -> [Integer]
variable :: String -> [Integer]
minus :: [Integer] -> [Integer] -> [Integer]
greater :: [Integer] -> [Integer] -> [Integer]
times :: [Integer] -> [Integer] -> [Integer]

 So: Minus (Variable “x”) (Variable “y”)

will be replaced by a different version:

 minus (variable “x”) (variable “y”) (*)

where minus, variable and so ...are called pseudoconstructors.

Remark 1: The relation (*) are representing both syntax (being unevaluated)
and semantics (when Haskel's lazy evaluation mechanism decides to compute
the final semantic value) in the same time!
Remark 2: There is no needs for such functions to be together, in the same
module. We can describe / declare, for example,:

log :: [Float] -> [Float] -> [Float] in a module and
plus :: [Float] -> [Float] -> [Float] in an other module

and still be able to mix them in syntax and computations by using something
like this, which is not a tree as you might expect:

(plus (variable “x”) (log (constant 2)(variable “y”))

 Notice the non capitals letters from the beginning of the identifiers.

We are using the do-notation in order to express computations:

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: [Float]

D. POPA

 240

but we have to specify the type of the monadic action which is the result.
Remember: The traditional solution was usually more complex and all those
“do”-s were stick together in the same function. Here is one of them:

 do { vx <- interp x env;
 vy <- interp y env;
 return (vx + vy); } :: M Float

Remark: Our specifications are in contrast with the papers [Wadler P. (1992-
1995)]. Remember the idea and the definition of pseudoconstructors as
functions over monadic actions: The pseudoconstructors are replacing the
data values constructors from the right side of a data declaration.

3.6. Where is the environment when we need it ?
 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: M Float

 As you may notice: This code – above - seems to have the
environment hidden or no environment at all! Idea: If an environment is
needed (and usually it is!) the list monad may be replaced with an other state
or writer monad. Anyway, for simple expressions using constants and
operators the list monad (or even the identity monad) is enough.

3.7. May we have overloaded functions ? Usually, some arithmetic
operators are overloaded:

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: [Float]

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: [Integer]
 Or, more generaly:

Direct modular evaluation of expressions using the monads and type classes in
Haskell

 241

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: M Float

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: M Integer

 Can we use two or more kind of “plus” in different modules? After
some experiments the answer was: Yes, using multi-parameter type classes,
which is a common extension of Haskell 98. (i.e. the program must be run
using the “-98” switch with Hugs.)

module MyPlusFloat where
import MyFloat
import ClassPlus
instance Plus Float Float Float where
 plus x y = do { vx <- x; vy <- y;
 return (vx + vy); } :: [Float]

 A more general form is:

module MyPlusFloat where
import MyFloat
import ClassPlus
instance Plus Float Float Float where
 plus x y = do { vx <- x; vy <- y;
 return (vx + vy); } :: M Float

M being an arbitrary monad.

 Exercise for the ambitious reader: Write similars modules: MyPlusInt,
MyPlusChar, MyPlusComplex, ...

 Example: modular specification for an overloaded “plus” using a
multiparameter type class: ClassPlus. It looks like...

D. POPA

 242

module ClassPlus where

class Plus a b c where
 plus :: [a] -> [b] -> [c]

{-----------------------------
 A triple of types a b c belongs to the Plus Class “ClassPlus” if (and
only if) there exist a function “plus” having the signature as above. The
hypothesis that three types belongs (as a triple) to the ClassPluss will be
provided by an instantiation of that class, as we saw.
 You are free to use any traditionally used monad, for example the
StOut monad from the paper of [Sheard T.; Benaissa Z. ; Pasalic E. (1999)],
or any other monad, built using monad transformers.
--}

3.8 But how are the numbers defined?

Let's see the module which is used to define numbers:

module MyNum where
--- Modular evaluator for Integers producing monadic values [Integer] in the
list monad.

evalnum :: Integer -> [Integer]
evalnum x = [x]

---The pseudoconstructor is producing monadic values, in this case lists
having exactly one element.

constant :: Integer -> [Integer]
constant x = do { vx <- evalnum x ;
 return vx ; }

... well, we will not discuss optimization, yet!

 When an evaluator / interpreter is build all the required modules are
used and nothing more:
module ParserSumaCifre where --main prg.
import Monad --use monads,
import ParseLib --parsers,

Direct modular evaluation of expressions using the monads and type classes in
Haskell

 243

import MyNum --numbers,
import ClassPlus --plus,
import ClassMinus --minus:
import MyPlusNum --one plus
import MyMinusNum --one minus

Remark 3: Other parser combinators (like Parsec) may be used instead of
ParseLib, or we can work only with pseudoconstructors, as you see below.

Figure 2. Pseudoconstructors in action

3.9. Optimizing a module using monad's laws.

An optimized module may look like the next one, where both sources
are shown, the old one being commented.

module MyChar where
evalchar :: Char -> [Char]
evalchar x = [x]

----Old implementation of the pseudoconstructor
--char ::Char -> [Char]
--char x = do {vx <- evalchar x;
-- return vx; } ----Applying one of the monad's law =>

----New implementation of the pseudoconstructor
char ::Char -> [Char]
char x = [x]

D. POPA

 244

4. Evaluation of our solution
Our evaluation seeks to prove four hypotheses:

(1) that the increment of the RAM space used is approx. 5% or less when
adding modularity on this way
(2) that missing syntax trees have no important impact in system design; and
finally
(3) optimizing the code using the monad rules is a good improvement

4.1 Hardware and Software Configuration
 The programs was tested using the Hugs 2002 interpreter included in
The Mandrake 10.0 Linux distribution. The OS was upgraded to the new
Mandriva 2007 Spring Free Edition running on a 3.4 GHz Pentium D. The
smallest usable configuration seems to be an IBM dual processor (2x133Mhz)
with 80MB Ram and a 4GB SCSI HDD running Mandrake Linux 8.2.

4.2 Experiments and Results
 We have ran six experiments using two different kind of terms:
(1) we had measured the spaced used by the evaluation of a simple expression
(no paranthesis, 10 numbers) using a classic evaluator with trees but no lists .
(2) we had measured the spaced used by the evaluation of a simple expression
(no paranthesis, 10 numbers) using a classic modified evaluator with trees
and numbers represented by lists, in order to determine the overloading
introduced by the lists.
(3) we had measured the spaced used by the evaluation of a simple expression
(no paranthesis, 10 numbers) using a our new modular evaluator with trees
and the list monad, in order to see the overloading introduced by the monad
structure .
(4) we had measured the spaced used by the evaluation of a simple expression
(more paranthesis, 10 numbers) using a classic evaluator with trees but no
lists .
(5) we had measured the spaced used by the evaluation of a simple expression
(more paranthesis, 10 numbers) using a classic modified evaluator with trees
and numbers represented by lists, in order to see the overloading introduced
by the lists.
(6) we had measured the spaced used by the evaluation of a simple expression
(more paranthesis, 10 numbers) using our new modular evaluator with trees
and the list monad, in order to see the overloading introduced by the monad
structure. The three last tests was repeated.
 The space was computed by Hugs, using the ":set +s" command. All

Direct modular evaluation of expressions using the monads and type classes in
Haskell

 245

sources had included the same modular parser written using ParseLib, in order
to evaluate the impact of our modular evaluator on a complete (minimal)
system. The source of the modular system was optimized using the monad
rules, in order to reduce the consumed space. We have just described out
evaluation setup; now, let's talk about our results.

Figure 3: Three solutions was compared: Standard evaluator, Modified
standard evaluator and The New modular monadic evaluator
Cyclamen = Standard evaluator: Parser , Trees, Integer
Yellow = Modified std. evaluator: Parser, Trees, [Integer], Lists to see how
much overload is got by lists
Magenta = New monadic evaluator: Parser, no Trees, Modularity, [Integer],
The List Monad
(all three had ran on the same P4 3.40 GHz Intel PC).

5. Conclusions
 Space consumed adding lists and modularization: Adding lists to a
standard evaluator (i.e. storing values as lists with only one element instead of
elements) increases space with aprox 4% (considering a whole system,
including the parser). Adding modularity increases space again with aprox
2%. Adding both we get a value a little big than 5% but far less than 10%. We
consider that increasing the memory even with 10% is still a good price for
modularity of a monadic interpreter or evaluator. So, such kind of modularity
is affordable and we are able to build evaluators, interpreters and even
compilers by simply including the requested (reusable) modules in the main
program. In fact the modularity itself overloads the space with aprox 2%.
Remark 4: The lazy evaluation system based in fact on Hugs semantics
caused sometimes dual experimental results, due to the different ways of lazy
evaluation. That is why we have to evaluate the second expression two times.
The biggest values are shown as Experiment 3:

D. POPA

 246

 Exp.1 Exp.2 Exp. 3 Colour
Modular Monadic Ev.
Standard Evaluator
Modified Std. Evaluator

Figure 4-5: The effective values of space used in our first experiments,
(captured from Gnumeric).

Relative differences between solutions are less than 6%. The first line

is the relative difference between the New Modular Monadic Evaluator and
The Standard Tree Evaluator. The main part of the difference is introduced by
the lists nor by the modularization (see the second line) – aprox 4% of it.

 On the other side, pseudoconstructors over monadic actions –
introduced here – had proved to be a good tool for the modularization of
interpreters, compilers or evaluators. Of course, modular parsers have to
produce values expressed by pseudoconstructors and not by usual data
constructors.

The syntax trees proved harmful in terms of modularity.

Direct modular evaluation of expressions using the monads and type classes in
Haskell

 247

6. Future and In-Progress Work
 Replacing the Parser Combinators from ParseLib with a modern
library as Parsec or one of his successors leads to a better control and report of
the syntax errors made by the parser. Replacing the list monad with an State
and IO monad can be a simple way of building modular systems like web-
pages generators, and, therefore, we will be able to dynamically serve clients
with pages produced by a modular, easy updated system. Replacing the list
monad with a more complex monad, having IO, state, errors, context and so,
is a way of building modular imperative (local, national) programming
languages as Rodin. [Dan Popa, (2008)] In this Project, the
pseudoconstructors are also used as a replacement of normal data constructors
used by the data declarations of The Haskell Language.
 There is a possible relation between our research and The Expression
Problem, raised by [Wadler (1998)]. But they are different problems with
different solutions. The relation between them, anyway, should be
investigated.
 Also, a parallel between our work and [Swierstra, W. (2008)] should
be made, even there are different ideas. (Functors versus Monadic
Pseudoconstructors).

References
[1] Leijen D.; Meijer E. ; (2001) Parsec: A practical parser library,
Electronics Notes in Theoretical Computer Science 41, No. 1
[2] Espinosa D. ;(1995) Semantic Lego, Ph.D. thesis, Columbia
University,
[3] Leijen D.;(2001) Parsec a fast combinator parser library, Univ. of
Utrecht, Dept. Of Computer Science, Utrecht, The Nederlands,
[4] Leijen D., Meijer E., (2001) Parsec: Direct Style Monadic Parser
Combinators For The Real World, DRAFT, Oct.4,
[5] Hudak,P; Hughes,J; Peyton Jones S, Wadler, P, (2007) A History of
Haskell: Being Lazy With Class , Third ACM Sigplan History of
Programming Languages Conference (HOPL – III) San Diego, CA, April 16,
2007
[6] Hutton G., Meijer E., (1998) ParseLib - A library of monadic parser
combinators, Included in Mandriva Linux 10.0
[7] Odersky M, Zenger M (2005) – Scalable Component Abstractions,
OOPSLA'05, Oct. 16-20, San Diego, California, USA, ACM
[8] Peyton Jones S; Hughes J, (1999) Report on the programming
language Haskell 98, a non strict purely functional programming language,

D. POPA

 248

Technical report, www.Haskell.org/onlinereport
[9] Peyton Jones S. (editor) (2002) Haskell 98 Language and Libraries,
The Revised Report, Cambridge , www.haskell.org/definition/haskell98-
report.pdf
[10] Sheard T.; Benaissa Z.; Pasalic E. (1999) DSL Implementations Using
Staging And Monads, Proceedings of DSL'99: The 2nd Conference on
Domain-Specific Languages, Austin, Texas, USA, October 3–6,. p 81-94
www.usenix.org/events/dsl99/full_papers/sheard/sheard.pdf
[11] Popa D., (2007) Introducere in Haskell 98 prin exemple, (Introduction
to Haskell by Examples) Bacau, EduSoft,
[12] Popa, D. (2008) Rodin Language Website – in prepairing
http://www.haskell.org/haskellwiki/Rodin
[13] Monad laws http://www.haskell.org/haskellwiki/Monad_laws
[14] Tang. A; (2005) PUGS, Bootstrapping Perl 6 with Haskell, ACM
Haskell, sep 30, 2005, Talin, Estonia
[15] Wadler. P (1992) – Monads for functional programming, Broy
Manfred (ed.) Proc. Marktoberdorf Summer School on program design
calculi, Springer Verlag,
[16] Wadler. P (1992) – The essence of functional programming, The 19'th
Symposium on Principles of Programming Languages (Albuquerque), New
Mexico, ACM ,
[17] Wadler. P (1992) – Comprehending Monads. Mathematical Structures
in Computer Science, 2,
[18] Wadler P. (1995) How to declare an imperative, International Logic
Programming Symposium, MIT Press,
[19] Wadler P. (1998) The Expression Problem. Accessible at:
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
[20] Zenger M. (2004) Programming Language Abstractions for Extensible
Software Components – Doctoral Thesis, EPFL – Switzerland, EPFL
Lausanne http://zenger.org/papers/thesis.pdf
[21] Swierstra, W. (2008), Data types `a la carte, In JFP 18(4), Cambridge
University Press, pp 423-436.
[22] Extra readings: interpreters evaluators and virtual machines; the list
monad

University of Bacau,
Bacau, 600114, Romania, danvpopa@ub.ro
Ro/Haskell Group, popavdan@yahoo.com

