
Adaptive DFA – the development of
adaptable methods

Dan Popa

Univ. "Vasile Alecsandri", Bacau

Overview

➲ 5 years ago, in [Pop 04] and [Pop 05] the
Adaptive DFA was proposed

➲ Various implementations was during this
years: using Oberon-2, using C and C++,
by the original author and his students

➲ Now we are coming back with a mathemat-
ical point of view concerning Adaptive DFA
suggested by the use of the VHLL Haskell.

Preliminaries

➲ The mathematics of Adaptive DFA is here
described using a notation high related to
Haskell.

➲ Functions will have long names:
f(x) will be used together with, for ex:
funct(x) and even funct x

➲ Multiple parameters functions will be written
not as functia (a, b) but as
functia a b

Preliminaries (II)

➲ The sets will be in fact ordered sets with
eventually duplicated elements (lists). Ex:
x= [1,4,5]
[x | x <- a | x >3]

Preliminaries (III)- The “cradle”

➲ Every program is having some auxiliary
functions. Here, they are:

➲ --- Intersection of two lists, reloaded ---------

intersect a b =
 [c1 | c1 <- a, c2 <-b , c1 == c2]

Preliminaries (IV)- The “cradle”

-- Adding spaces at the end of the string s

addspace s = ' ':s++" "

-- Also can be written as (not so fast):
-- addspace s = " "++s++" "

Classes of characters

➲ According to the paper [Pop 05] where Ad-
aptive DFA was mathematically presented
for the first time, the characters processed
by an Adaptive DFA are, first of all classified
in :

➲ Letters,
➲ Digits
➲ Spaces etc.

The process is similarly with part of the lex-
ical analysis

Classes of characters

➲ -- Simple function to compute the class

clasa a =
 if (a >= 'a' && a <= 'z') ||
 (a >= 'A' && a <= 'Z')
 then 'l'
 else if (a >= '0' && a<= '9')
 then 'c'
 else if a == '\t' || a =='\n' || a ==' ' then '_'
 else '?'

➲ -- 'l' = alphabetic, 'c' = digits, '_' = spaces

Preparing words for storage

➲ -- Classifying the characters from a new word
-- means adding spaces and classify the result
-- character after character. What we get will be

➲ -- called “scheme”. Ex: “_ccc_”

➲ clasifica = (map clasa). addspace

-- Where,..., you know:
-- map – the usual map of functional languages
-- Ex: map f [x,y,z] = [f x,f y, f z]
-- 'dot' is the product of functions

Simulating the storage
in the matrix

{--
 Pentru fiecare tripleta (x,y,z) de clase ale unor
simboluri succesive vom pastra schemele
cuvintelor care contin acea tripleta intr-o lista aso-
ciata tripletei. Aceasta lista devine un al patrulea
element.

 Lista se poate afla usor filtrand dictionarul:
 filter (substr (x,y,z)) dict
unde functia filtru este data de formula:
--}

Simulating the storage
in the matrix

{--
 For every triple (x,y,z) (x,y,z being classes of
successive symbols of the word) we will preserve
the schemes of those words in a list which is as-
sociated with the triple, becoming the 4th element.

 The list can be easily found by filtering the dic-
tionary itself:
 filter (substr (x,y,z)) dict

where the filter is defined as:
--}

The filter

➲ substr (x,y,z) (c1:c2:c3:t) =
 if c1==x && c2==y && c3==z
 then True
 else substr (x,y,z) (c2:c3:t)
substr (x,y,z) (c1:c2:[]) = False

➲ -- if the sequence of classes “xyz” is found
somewhere in the scheme of the word, this
fact triggers the placement in that list.

The trained Adaptive DFA

➲ automat dict =
 [(x,y,z, filter (substr (x,y,z)) dict)
 | x <- n, y <- n , z <- n]
 where
 n = "lc_" -- n = map clasificare "D2 "

➲ -- Note: The dict which is used here is in
fact a list of schemes of the words serving
as training examples.

Rebuilding examples from previous
papers

➲ Now, the adaptive DFA from [Popa05]
which was trained to accept numbers can
be simply defined as:

➲ a = automat ["_c_", "_cc_", "_ccc_"]

Or using examples and the classification fct.

➲ a = automat [clasifica "0", clasifica "21",
clasifica "196"]

Rebuilding examples from previous
papers

➲ Now, the adaptive DFA from [Popa05] can
be established by simply asking Hugs or
GHCi to produce an explicit value:

Using a trained Adaptive DFA

➲ analiza cuvant automat=
 [m | (x,y,z,m) <- automat
 , (x,y,z) `elem` triplete cuvant]

➲ -- and if you want to trace:

➲ trace cuvant automat=
 [(x,y,z,m)| (x,y,z,m) <- automat
 , (x,y,z) `elem` triplete cuvant]

...where the proposed text is
broken in “triples”...

➲ ------------------ Auxiliary---------------

➲ triplete ::[Char] -> [(Char,Char,Char)]
--triplete [a,b,c] = [(a,b,c)]
triplete (a:b:c:d) = (a,b,c) : (triplete (b:c:d))
triplete (b:c:_) = []

➲ Note: in the previous slide x `elem` m is
the test “if the element x belongs to the list
m “

The analyzer's engine

➲ --- Analyzing the Word using an ADFA --

➲ analiza cuvant automat=
➲ [m | (x,y,z,m) <- automat
➲ , (x,y,z) `elem` triplete cuvant]

➲ Remark: The list may contains more sets of
“schemes”. If one “scheme” appears in all
this sets -> the word is accepted. See next
slide:

Accepting a word

➲ -- Acceptance by intersection.
➲ -- When the ADFA is processing a token, it

can identify more than one set of schemes
partially matching that token.

➲ acceptare cuvant automat
 = foldl intersect (head a) a
 where
 a = analiza cuvant automat

Acceptance criteria

➲ The intersection contains ONE or more
SCHEMEs => Accepted.

➲ The intersection did not contain a common
scheme, so it is [] => Not accepted.

The trained ADFA, is working now

Conclusions

➲ The adaptive automata can be build using
various languages. We have tried: Oberon-
2, C++, Haskell.

➲ The theory and technology may have mul-
tiple appliances: video alarm systems,
automatic weapons, anti-virus products,
automatic observers, music synthesis and
recognition, voice identification
systems...and maybe more.

Present and the next step

Testing the limits of adaptive automata:

➲ Compilers, interpreters, DSL's: ok, done

➲ Allarms triggered by image: ok, done

➲ Other appliances: working....

References

[Arm01] Armour Philip: The business and
software: Zeppelins and jet planes: a
methaphor for modern software projects.
Comm. Of ACM, 44(10):13-15 Oct.2001

[Aho07] Alfred Aho, Monica Lam, Ravi
Sethi, Jeffrey Ullman, Compilers Principles,
Techniques, & Tools, sec.ed.2007, Pearson
Education (chap 3, pp 109-189)

References

[Pop04] Popa Dan; Adaptable Tokenizer for
Programming Languages , Simpozionul In-
ternational al Tinerilor Cercetatori, ASEM,
Chisinau 2004, pg 55-57, ISBN 9975-75-
239-x
[Pop05] Popa Dan ; Adaptive DFA based
on array of sets, Studii si Cercetari Ştiinţi-
fice, Seria Matematica, Nr 15 (2005) p 113-
121, ISSN 1224 - 2519

References

Smeu Florin: Sistem de supraveghere video
bazat pe automat adaptiv.
(The student got the first prize :) !)

 http://stiinte.ub.ro/cercetare/c-conferinte/106/327

http://stiinte.ub.ro/cercetare/

	Title
	Overview
	Long-term goal
	Slide 4
	Slide 5
	Slide 6
	The Present Situation
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Development up to present
	Slide 15
	Potential Alternatives
	Slide 17
	Recommendation
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

