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Overview

➲ 5 years ago, in [Pop 04] and  [Pop 05] the 
Adaptive DFA was proposed

➲ Various implementations was during this 
years: using Oberon-2, using C and C++,
by the original author and his students

➲ Now we are coming back with a  mathemat-
ical point of view concerning Adaptive DFA 
suggested by the use of the VHLL  Haskell.



Preliminaries

➲ The mathematics of Adaptive DFA is here 
described using a notation high related to 
Haskell.

➲ Functions will have long names: 
f(x) will be used together with, for ex:  
funct(x)  and even funct x

➲ Multiple parameters functions will be written 
not as functia ( a, b) but as
functia a b 



Preliminaries (II)

➲ The sets will be in fact ordered sets with 
eventually duplicated elements (lists). Ex:
x= [1,4,5] 
[ x | x <- a | x >3 ]



Preliminaries (III)- The “cradle”

➲ Every program is having some auxiliary 
functions. Here, they are:

➲ --- Intersection of two lists, reloaded ---------
 
intersect a b =
      [ c1 | c1 <- a, c2 <-b , c1 == c2]



Preliminaries (IV)- The “cradle”

-- Adding spaces at the end of the string s

addspace s = ' ':s++" "

-- Also can be written as (not so fast):
-- addspace s = " "++s++" "



Classes of characters

➲ According to the paper [Pop 05] where Ad-
aptive DFA was mathematically presented 
for the first time, the characters processed 
by an Adaptive DFA are, first of all classified 
in : 

➲ Letters, 
➲ Digits 
➲ Spaces etc.

The process is similarly with part of the lex-
ical analysis



Classes of characters

➲ -- Simple function to compute the class

clasa a = 
      if (a >= 'a' && a <= 'z') || 
         (a >= 'A' && a <= 'Z') 
          then 'l'
          else if (a >= '0' && a<= '9') 
               then 'c'
               else if a == '\t' || a =='\n' || a ==' ' then '_'
                    else '?'

➲ -- 'l' = alphabetic,  'c' = digits,  '_' = spaces



Preparing words for storage

➲ -- Classifying the characters from a new word
-- means adding spaces and classify the result
-- character after character. What we get  will be

➲ -- called “scheme”. Ex: “_ccc_” 

➲ clasifica = (map clasa). addspace

-- Where,..., you know:
-- map – the usual map of functional languages
-- Ex:  map f [x,y,z] = [ f x,f y, f z]
-- 'dot' is the product of functions



Simulating the storage 
in the matrix

{-- 
    Pentru fiecare tripleta (x,y,z) de clase ale unor
simboluri succesive vom pastra schemele 
cuvintelor care contin acea tripleta intr-o lista aso-
ciata tripletei. Aceasta lista devine un al patrulea 
element.

 Lista se poate afla usor filtrand dictionarul:
     filter (substr (x,y,z))  dict 
unde functia filtru este data de formula:
--}



Simulating the storage 
in the matrix

{-- 
    For every  triple (x,y,z) ( x,y,z being  classes of 
successive symbols of the word) we will preserve  
the schemes of those words in a list which is as-
sociated with the triple, becoming the 4th element.

 The list can be easily found by filtering the dic-
tionary itself:
     filter (substr (x,y,z))  dict 

where the filter is defined as:
--}



The filter 

➲ substr (x,y,z) (c1:c2:c3:t) =
     if c1==x && c2==y && c3==z
     then True
     else substr (x,y,z) (c2:c3:t)
substr (x,y,z) (c1:c2:[]) = False

➲ -- if the sequence of classes “xyz” is found 
somewhere in the scheme of the word, this 
fact triggers the placement in that list.



The trained Adaptive DFA

➲ automat dict =
 [ (x,y,z, filter (substr (x,y,z))  dict ) 
     |  x <- n, y <- n , z <- n  ]
     where
        n = "lc_"     -- n = map clasificare "D2 "  

➲ -- Note: The dict which is used here is in 
fact a list of schemes of the words serving 
as training examples.



Rebuilding examples from previous 
papers

➲ Now, the adaptive DFA from [Popa05] 
which was trained to accept numbers can 
be simply defined as:

➲ a = automat ["_c_", "_cc_", "_ccc_"]

Or using examples and the classification fct.

➲ a = automat [ clasifica "0", clasifica "21",  
clasifica "196"] 



Rebuilding examples from previous 
papers

➲ Now, the adaptive DFA from [Popa05] can 
be established by simply asking Hugs or 
GHCi to produce an explicit value:



Using a trained Adaptive DFA

➲ analiza cuvant automat=
  [ m | (x,y,z,m) <- automat 
        , (x,y,z) `elem` triplete cuvant]

➲ -- and if you want to trace:

➲ trace cuvant automat=
  [ (x,y,z,m)| (x,y,z,m) <- automat 
        , (x,y,z) `elem` triplete cuvant]



...where the proposed text is 
broken in “triples”...

➲ ------------------ Auxiliary---------------
                         

➲ triplete ::[Char] -> [(Char,Char,Char)]     
--triplete [a,b,c] = [(a,b,c)]                    
triplete (a:b:c:d) = (a,b,c) : (triplete (b:c:d ))
triplete (b:c:_)   = []

➲ Note:   in the previous slide x `elem` m  is 
the test “if the element x belongs to the list 
m “



The analyzer's engine

➲ --- Analyzing  the Word using an ADFA  --

➲ analiza cuvant automat=
➲   [ m | (x,y,z,m) <- automat 
➲         , (x,y,z) `elem` triplete cuvant]

➲ Remark: The list may contains more sets of 
“schemes”. If one “scheme” appears in all 
this sets -> the word is accepted. See next
slide:



Accepting a word

➲ -- Acceptance by intersection.
➲ -- When the ADFA is processing a token, it 

can identify more than one set of schemes 
partially matching that token. 

➲ acceptare cuvant automat
  = foldl intersect (head a ) a
    where
      a =  analiza cuvant automat 
       



Acceptance criteria

➲ The intersection contains ONE or more 
SCHEMEs  => Accepted.

➲ The intersection did not contain a common 
scheme, so it is [ ] => Not  accepted.



The trained ADFA, is working now



Conclusions

➲ The adaptive automata can be build using 
various languages. We have tried: Oberon-
2, C++, Haskell. 

➲ The theory and technology may have mul-
tiple appliances: video alarm systems, 
automatic weapons, anti-virus products, 
automatic observers, music synthesis and 
recognition, voice identification 
systems...and maybe more.



Present and the next step

Testing the limits of adaptive automata:

➲ Compilers, interpreters, DSL's:  ok, done

➲ Allarms triggered by image: ok, done

➲ Other appliances: working.... 
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