GUMSMP: a multi-level parallel Haskell implementation J

Malak Aljabri, Hans-Wolfgang Loidl, and Phil Trinder

The University of Glasgow - Heriot Watt University

HERIOT

A Universit
_J-’ of Glasg0v¥ ﬁ?ﬁéﬂ

Sep 6, 2014

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 1/25

Design of the GUMSMP Runtime System

Motivation

HERIOT
Umversny FWATT

Glasgow

@ Parallel architectures are increasingly multi-level e.g. clusters of

multicores.

@ A hybrid parallel programming model is often used to exploit parallelism

across the cluster of multicores e.g. using MPI + OpenMP.
@ Managing two abstractions is a burden for the programmer and increases
the cost of porting to a new platform.

S

Q.

network

\ multicore

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

*%®

multlcure

GUMSMP

Sep 6, 2014

W UNIVERSITY

2/25

Design of the GUMSMP Runtime System

HERIOT

Tl Umversn
asgovz E_‘WATT

P UNIVERSITY

Contents

“ Design of the GUMSMP Runtime System

9 Scalability on a Multicore Cluster

e Improvements to Load Balance: Low Watermarks

e Improvements to Data Locality: Spark Segregation

e Distributed vs. Shared Heap on Shared Memory Machines

e Conclusions

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 3/25

Design of the GUMSMP Runtime System

HERIOT

i Umversn
ngovz @_‘WATT

W UNIVERSITY

GpH (Glasgow Parallel Haskell)

@ GpH is a conservative, parallel extension of Haskell, focussing on
stateless code.

@ Identify parallelism, do not control it (semi-explicit)!

@ Parallelism is expressed by two primitives added to the Haskell program:
par and pseq.

par :: a —>b —>b -— parallel composition

pseq :: a > b —-> Db -- sequential composition

X 'par'' y => vy

@ Evaluation strategies are abstractions over these basic primitives.

o Example1:parmap f xs = map f xs ‘using' parList rdeepseq

See AiPL14 summer school and “Seq no more” paper (Haskell'10)

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 4/25

Design of the GUMSMP Runtime System

!Umversny !_WVATT
Glasgow &4

GpH Implementations

Three main GpH implementations (runtime-systems):
® GHC-SMP - shared memory.
® GHC-GUM - distributed memory.
@ GUMSMP - hybrid shared/distributed memory.

Q Q

network

\ multicore) multicore

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 5/25

Design of the GUMSMP Runtime System

!Umversny !_WVATT
Glasgow &4

GpH Implementations

Three main GpH implementations (runtime-systems):
@ GHC-SMP - shared memory.
® GHC-GUM - distributed memory.
@ GUMSMP - hybrid shared/distributed memory.

GHC-SMP) (GHC-SMP)

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 5/25

Design of the GUMSMP Runtime System

HERIOT

UnlverSlty FFWATT
angW &P niversiy

GpH Implementations

Three main GpH implementations (runtime-systems):
® GHC-SMP - shared memory.
@ GHC-GUM - distributed memory.
@ GUMSMP - hybrid shared/distributed memory.

| nm == -)

network

GHC-GUM

e —————]

\ multicore) multicore

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 5/25

Design of the GUMSMP Runtime System

A Universit
L %g&

GpH Implementations

Three main GpH implementations (runtime-systems):
® GHC-SMP - shared memory.
® GHC-GUM - distributed memory.
@ GUMSMP - hybrid shared/distributed memory.

(\ GUMSMP (\

—_—

network

X
O

-

multicore 4

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 5/25

Design of the GUMSMP Runtime System

HERIOT

Umversny EEWATT
QSgOW & universiTy

Our System: GUMSMP

A multilevel parallel Haskell implementation for clusters of multicores.
Integrates the advantages of the two GpH implementations:

o Cheap parallelism on one node (GHC-SMP)
@ Scalable parallelism on a cluster (GHC-GUM)

Implements virtual shared memory on a cluster.
Uses implicit synchronisation and on-demand communication.
Provides improvements for automatic load balancing.

Provides a single high-level programming model.

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 6/25

Design of the GUMSMP Runtime System

A Universit
J-’ asgov)\;

Work Distribution in GHC-GUM

Load Balancing:

@ Searching for Local Work.
© Searching for Remote Work.

PE1 PE2 PE3

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 7/25

Design of the GUMSMP Runtime System

Work Distribution in GHC-GUM

Load Balancing:

@ Searching for Local Work.
© Searching for Remote Work.

PE1

FISH

J.? Umversny

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

PE2

PE3

GUMSMP

Glasgow

Sep 6, 2014

7125

Design of the GUMSMP Runtime System

Work Distribution in GHC-GUM

Load Balancing:

@ Searching for Local Work.
© Searching for Remote Work.

FISH

J.? Umversny

PE1

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

FISH

Bidivid

~—
PE2

PE3

GUMSMP

Glasgow

Sep 6, 2014

7125

Design of the GUMSMP Runtime System

A Universit
J-’ asgov)\;

Work Distribution in GHC-GUM

Load Balancing:

@ Searching for Local Work.
© Searching for Remote Work.

/\m\

FISH FISH
—
PE1 PE2 PE3

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 7/25

Design of the GUMSMP Runtime System

HERIOT

Umversny EEWATT
QSgOW & universiTy

Work Distribution in GHC-SMP

Load Balancing:
@ Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
@ The owner can push and pop from one end of the queue without
synchronization.
@ Other threads can steal from the other end of the queue.

) ([
| [

=) (&) (&0

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 8/25

Design of the GUMSMP Runtime System

HERIOT

Umversny EEWATT
QSgOW & universiTy

Work Distribution in GHC-SMP

Load Balancing:
@ Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
@ The owner can push and pop from one end of the queue without
synchronization.
@ Other threads can steal from the other end of the queue.

- ()
|

=) (&) (&0

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 8/25

Design of the GUMSMP Runtime System

Work Distribution in GHC-SMP

Load Balancing:

HERIOT

Umversny EEWATT
QSgOW & universiTy

@ Processor’s Spark Pool is implemented as a bounded work-stealing

queue.

@ The owner can push and pop from one end of the queue without

synchronization.

@ Other threads can steal from the other end of the queue.

i‘zi‘z

W

* ()
el

CPUO

[CPU1

) (&0

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

GUMSM

P Sep 6, 2014 8/25

Design of the GUMSMP Runtime System

HERIOT

A Universit
4’ qulasgon @WATT

W UNIVERSITY

GUMSMP Work Distribution Mechanism

@ Work distribution of GUMSMP is hierarchy aware.

@ It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).

@ Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).

Network
Multicore Multicore
) ((>))
- | Thread lﬂ | Thread 2 | “Thread 3 |
CPU1 PU 2 CPUO CPU1 CPU 2
ey @) (@) =) @

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 9/25

Design of the GUMSMP Runtime System

HERIOT

A Universit
4’ qulasgon @WATT

W UNIVERSITY

GUMSMP Work Distribution Mechanism

@ Work distribution of GUMSMP is hierarchy aware.

@ It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).

@ Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).

Network
Multicore Multicore
X A e N s q s N\ N
- - | Threadlﬂ | Thread 2 | | Thread 3 |
(cruo) [CPUIL (cruz2) JCPUO] JCPUlL JCPUZL

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 9/25

Design of the GUMSMP Runtime System

HERIOT

A Universit
4’ qulasgon @WATT

W UNIVERSITY

GUMSMP Work Distribution Mechanism

@ Work distribution of GUMSMP is hierarchy aware.

@ It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).

@ Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).

Network
Multicore Multicore
K S Y¢) (w () ()
- - | Threadlﬂ | Thread 2 | EThread?- |
(cruo) [CPUIL (cruz2) JCPUO] JCPUlL [CPUZL
PE1 Scheduler FISH Scheduler PE2

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 9/25

Design of the GUMSMP Runtime System

HERIOT

A Universit
4’ qulasgon @WATT

W UNIVERSITY

GUMSMP Work Distribution Mechanism

@ Work distribution of GUMSMP is hierarchy aware.

@ It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).

@ Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).

SCHEDULE Network
/Multicore N Multicore
A 7«'\! Y¢) f\‘ w () ()
- - | Threadlﬂ | Thread 2 | EThread?- |
(cruo) [CPUIL (cruz2) JCPUO] JCPUlL [CPUZL
PE1 Scheduler FISH Scheduler PE2

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 9/25

Scalability on a Multicore Cluster

Speedup Results on a Multicore cluster

Speedup

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

90
80
70
60
50
40
30
20
10

GUMSMP Speedup for 8 Benchmarks

A Universit
ey ofGlasgov)\;

T T T T T T T
parmapfib ----+---
parfib —<—
sumeEuler @
coins —-#----
worpitzky - -4 -
Minimax - -® -
Mandel —-%—-
Maze ----+---
blackscholes

x’;:’/‘
il 7
‘@
A
_ A7
A- A&

e X DRI L
o L]
| | | |
10 20 30 40 50 60 70 80 90 100
No. Cores
GUMSMP Sep6,2014 10/25

Scalability on a Multicore Cluster

Umversny FEWATT

Scalability Results on a Multicore cluster

Scalability Results for GUMSMP

HERIOT

INIVERSITY

Glasgow &

140 T R T T T T T T T T T T
parfib —<— o - ® -9
120 - blackscholes - -0 - |
sumEuler @) U4
Maze -+ PR Sy o’
S 80]
°
9}
g
A 60 B
40 -+
20 B
0
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
No. Cores
Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 11/25

Improvements to Load Balance: Low Watermarks

HERIOT

A University B
ey of Gl asgov}\; @LX&I

GUMSMP’s Improved Work Distribution

We use watermarks for more flexible load balancing, with pre-fetching:

@ The system aims to keep the spark pool size between low- and
high-watermark.

@ Below low-watermark: pre-fetch work from a another processor.
@ Above high-watermark: off-load work to another processor.

High Watermark

Spark Pool

Low Watermark

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 12/25

Improvements to Load Balance: Low Watermarks

Load Balance without low watermarks

i University
&7 of Glasgow

GUMSMP Mandelbrot with input -2.0 -2.0 2.0 2.0 4096 4096 3024 on 16 PEs, 5 cores each, and noLWM policy

0 50.0 k 1000k 1500k 2000k 2500k 300.0k 350.0 k

450.0 k

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP

HERIOT
VATT

Sep 6, 2014 13/25

Improvements to Load Balance: Low Watermarks

Effectiveness with of low watermarks

i University
&7 of Glasgow

GUMSMP Mandelbrot with input -2.0 -2.0 2.0 2.0 4096 4096 3024 on 16 PEs, 5 cores each, and LWM policy

0 200k 400k 60.0 k 80.0k 1000k 1200k 1400k 1600k

2200k

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP

Sep 6, 2014

P UNIVERSITY

14/25

Improvements to Load Balance: Low Watermarks

Speedups with and without low watermarks

Speedup

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

90
80
70
60

50

40
30
20
10

5

GUMSMP Speedup for the Micro-Benchmarks (LWM Vs No LWM)

T
parfib-LWM
parfib-noLWM
sumEuler-LWM @
sumEuler-noLWM -

coins-LWM —-&--- ,
coins-noLWM —--—---
worpitzky-LWM - -a - -

worpitzky-noLWM

e @l
\ 4

g

»

10 20 30 40 50 60 70 80 90
No. of Cores
GUMSMP Sep 6, 2014

100

15/25

Improvements to Load Balance: Low Watermarks

A University
J?’ Qf GISSgOW UNIVERSITY

Low watermarks: load balance

GUMSMP Speedup for the Benchmarks (LWM vs no-LWM)

30 T T T T T T T T T
Minimax-LWM - -m - l
Minimax-noLWM - - - - .
25 - Mandel-LWM —-x— - W
Mandel-noLWM —-—-— ke K TR gk e
Maze-LWM K=K '
20 - Maze-noLWM =
o
=)
§ 15 - -
& "2l

| | | |
0 10 20 30 40 50 60 70 80 90 100

No. of Cores
GUMSMP Sep 6, 2014

16/25

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

Improvements to Data Locality: Spark Segregation

HERIOT

A Universit
of Glasgovz @WATT

P UNIVERSITY

GUMSMP’s Improved Data Locality

We use spark segregation to distinguish work by origin:
@ Original GUM design: all sparks are equal
@ Hierarchical GUMSMP design: use a separate import spark pool to
segregate sparks received from other processors from local sparks
@ Prefer either global or local sparks on export or thread creation (tunable).
@ Intuition: prefer local sparks where possible, to tackle heap fragmentation.

SCHEDULE
Network -
Multicore \ Multicore
Y * (e) (w * (N Y4
- | Thread 2 I H ‘T;‘:L{ ‘;";?L‘ | Thread 1 I | Thread 2 | | Thread 3 |
Pool Pool
(cpuo) JCPUlL (cpu2 . JCPUOLJCPUlLJCPUZ]
PE1 Scheduler ||’ | Scheduler PE2

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 17/25

Improvements to Data Locality: Spark Segregation

HERIOT
Umversny EEWATT
QSgOW & universiTy

Heap Fragmentation

One problem in a virtual shared heap is heap fragmentation: related
data-structures are on different nodes of the distributed system

High heap fragmentation results in frequent messaging.

We can measure heap fragmentation as the size of our internal
GlIT-tables.

An import spark pool is designed to reduce heap fragmentation.
Initial results show a reduction in the GlT-table sizes around 11%.

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 18/25

Improvements to Data Locality: Spark Segregation

GUMSMP

PE 1

GIT

GAll

GAl2

GA2.1

GA2.2

Il Thunk (computation)

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

HERIOT

A Universit
7 of Gl asgovz E_‘WATT

W UNIVERSITY

GIT

PE 2
| -GA21 Heap
_GA22
— Y
[R

1 Fetchme (global indirection) [1 Norma Form (data)

GUMSMP

Sep 6, 2014 19/25

Distributed vs. Shared Heap on Shared Memory Machines

Distrib. vs. Shared Heap on NUMA

e HERIOT
University FWATT

of Glasgow

@ NUMA architectures pose a challenge to parallel applications.
o Asymmetric memory latencies

o Asymmetric memory bandwidth between different memory regions.
Memory access times between different NUMA regions?

0:

1:

2:

3:

4:

5:

6:

7:

10

16

16

22

16

22

16

22

16

10

22

16

22

16

22

16

16

22

10

16

16

22

16

22

22

16

16

10

22

16

22

16

16

22

16

22

10

16

16

22

22

16

22

16

16

10

22

16

16

22

16

22

16

22

10

16

22

16

22

16

22

16

16

10

@ Our goal: compare the performance of
parallel Haskell applications using
shared memory vs. distributed memory systems on

physically shared memory NUMA architectures.

2

Measured using numactl -H
Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

GUMSMP

Sep 6, 2014

P UNIVERSITY

20/25

Distributed vs. Shared Heap on Shared Memory Machines

HERIOT

University
of Glasgow

Performance results

@ In each case, a total of 40 cores is used, and the difference is only in the
number of cores that are used per PE.

Runtimes
00 oo e

]
90 | === Coins

i I SumEuler
Worpitzky
Maze J U OO PP VP UPURSTUPUIUPPURROPPRRTPPPRPPPRO N Wl B
Mandel
70 |- Blackscholes | BT Ps o S

80

GO | L RN

% Maximum Values

50

40

30

20

10

XXXXXXRKXXXA -
ANEEANE
AXREE,

<z

X
>

002020026670, I3

X
XERETR

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

number of cores per PE

20

40

Sep6,2014 21/25

Distributed vs. Shared Heap on Shared Memory Machines

HERIOT

A Universit
ey qulasgovz @WATT

P UNIVERSITY

Distrib. vs. Shared Heap on NUMA

On a 48-core, shared-memory NUMA architecture we observe:

@ Improved runtimes with GUMSMP using 10+ cores, compared to
GHC-SMP.

@ Significantly improved performance with GUMSMP using up to only 5
cores per PE

@ Drastic increase in GC percentage in GHC-SMP for large core numbers,
due to a larger live heap.

@ Lower allocation rate of GHC-SMP compared to GUMSMP, due to the
locking of the first generation

@ = Using several small heaps, rather than one large heap, is consistently
better

@ = Specifically, use 8 SMP-instances on 8 NUMA regions

2see paper submitted to TFP14

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 22/25

Conclusions

HERIOT

&Th| Umversn
asgovz E_‘WATT

W UNIVERSITY

Conclusion

@ GUMSMP was designed for high-performance computation on multilevel
architectures e.g. networks of multicores.

@ One design goal is: hierarchy aware load balancing

@ The main benefits of GUMSMP:
e Scalable model
o Efficient exploitation of distributed and shared memory on different levels of
the hierarchy
e Single programming model
@ Improvements to work distribution mechanisms:
o Low Watermark: reduces runtime by up to 57%.
o Spark Segregation: ongoing work to reduce heap fragmentation.
@ On clusters speedups between 40 and 135 on up to 180 cores.

@ A distributed heap model is beneficial even on physical shared memory
systems=> use 8 SMP-instances on 8 NUMA regions

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 23/25

Conclusions

HERIOT

&Th| Umversn
asgovz E_‘WATT

W UNIVERSITY

Ongoing Work

@ Tune spark segregation to keep related data together (initial
improvements of heap fragmentation around 11%).

@ Evaluation of different spark select and spark export policies. In
particular, study:

@ The success rate of a policy.
@ lis effectiveness in improving performance and heap fragmentation.

@ Message Batching to reduce communication.

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 24/25

Conclusions

A Universit
J-’ asgov)\;

GUMSMP

Thanks for Listening ..
Questions?

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 25/25

	Design of the GUMSMP Runtime System
	Scalability on a Multicore Cluster
	Improvements to Load Balance: Low Watermarks
	Improvements to Data Locality: Spark Segregation
	Distributed vs. Shared Heap on Shared Memory Machines
	Conclusions

