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Design of the GUMSMP Runtime System

Motivation

Parallel architectures are increasingly multi-level e.g. clusters of
multicores.
A hybrid parallel programming model is often used to exploit parallelism
across the cluster of multicores e.g. using MPI + OpenMP.
Managing two abstractions is a burden for the programmer and increases
the cost of porting to a new platform.
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Design of the GUMSMP Runtime System

GpH (Glasgow Parallel Haskell)

GpH is a conservative, parallel extension of Haskell, focussing on
stateless code.

Identify parallelism, do not control it (semi-explicit)!

Parallelism is expressed by two primitives added to the Haskell program:
par and pseq.

Evaluation strategies are abstractions over these basic primitives.

Example1: parmap f xs = map f xs ‘using‘ parList rdeepseq

1See AiPL14 summer school and “Seq no more” paper (Haskell’10)
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Design of the GUMSMP Runtime System

GpH Implementations
Three main GpH implementations (runtime-systems):

GHC-SMP - shared memory.
GHC-GUM - distributed memory.
GUMSMP - hybrid shared/distributed memory.
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Design of the GUMSMP Runtime System

Our System: GUMSMP

A multilevel parallel Haskell implementation for clusters of multicores.
Integrates the advantages of the two GpH implementations:

Cheap parallelism on one node (GHC-SMP)
Scalable parallelism on a cluster (GHC-GUM)

Implements virtual shared memory on a cluster.

Uses implicit synchronisation and on-demand communication.

Provides improvements for automatic load balancing.

Provides a single high-level programming model.
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Design of the GUMSMP Runtime System

Work Distribution in GHC-GUM
Load Balancing:

1 Searching for Local Work.
2 Searching for Remote Work.
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Design of the GUMSMP Runtime System

Work Distribution in GHC-SMP
Load Balancing:

Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
The owner can push and pop from one end of the queue without
synchronization.
Other threads can steal from the other end of the queue.

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 8 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-SMP
Load Balancing:

Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
The owner can push and pop from one end of the queue without
synchronization.
Other threads can steal from the other end of the queue.

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 8 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-SMP
Load Balancing:

Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
The owner can push and pop from one end of the queue without
synchronization.
Other threads can steal from the other end of the queue.

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 8 / 25



Design of the GUMSMP Runtime System

GUMSMP Work Distribution Mechanism

Work distribution of GUMSMP is hierarchy aware.
It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).
Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).
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Scalability on a Multicore Cluster

Speedup Results on a Multicore cluster
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Scalability on a Multicore Cluster

Scalability Results on a Multicore cluster
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Improvements to Load Balance: Low Watermarks

GUMSMP’s Improved Work Distribution

We use watermarks for more flexible load balancing, with pre-fetching:

The system aims to keep the spark pool size between low- and
high-watermark.

Below low-watermark: pre-fetch work from a another processor.

Above high-watermark: off-load work to another processor.

Low Watermark

Spark Pool

High Watermark
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Improvements to Load Balance: Low Watermarks

Load Balance without low watermarks

Mandelbrot with input  -2.0 -2.0 2.0 2.0 4096 4096 3024  on 16 PEs, 5 cores each, and noLWM policy GUMSMP
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Improvements to Load Balance: Low Watermarks

Effectiveness with of low watermarks
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Improvements to Load Balance: Low Watermarks

Speedups with and without low watermarks
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Improvements to Load Balance: Low Watermarks

Low watermarks: load balance
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Improvements to Data Locality: Spark Segregation

GUMSMP’s Improved Data Locality
We use spark segregation to distinguish work by origin:

Original GUM design: all sparks are equal
Hierarchical GUMSMP design: use a separate import spark pool to
segregate sparks received from other processors from local sparks
Prefer either global or local sparks on export or thread creation (tunable).
Intuition: prefer local sparks where possible, to tackle heap fragmentation.
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Improvements to Data Locality: Spark Segregation

Heap Fragmentation

One problem in a virtual shared heap is heap fragmentation: related
data-structures are on different nodes of the distributed system

High heap fragmentation results in frequent messaging.

We can measure heap fragmentation as the size of our internal
GIT-tables.

An import spark pool is designed to reduce heap fragmentation.

Initial results show a reduction in the GIT-table sizes around 11%.
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Improvements to Data Locality: Spark Segregation
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Distributed vs. Shared Heap on Shared Memory Machines

Distrib. vs. Shared Heap on NUMA
NUMA architectures pose a challenge to parallel applications.

Asymmetric memory latencies
Asymmetric memory bandwidth between different memory regions.

Memory access times between different NUMA regions2

node 0: 1: 2: 3: 4: 5: 6: 7:
0: 10 16 16 22 16 22 16 22
1: 16 10 22 16 22 16 22 16
2: 16 22 10 16 16 22 16 22
3: 22 16 16 10 22 16 22 16
4: 16 22 16 22 10 16 16 22
5: 22 16 22 16 16 10 22 16
6: 16 22 16 22 16 22 10 16
7: 22 16 22 16 22 16 16 10

Our goal: compare the performance of
parallel Haskell applications using
shared memory vs. distributed memory systems on
physically shared memory NUMA architectures.

2Measured using numactl -H
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Distributed vs. Shared Heap on Shared Memory Machines

Performance results

In each case, a total of 40 cores is used, and the difference is only in the
number of cores that are used per PE.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 5 8 10 20 40

%
 M

ax
im

um
 V

al
ue

s

number of cores per PE 

Runtimes

Parfib
Coins
SumEuler
Worpitzky
Maze
Mandel
Blackscholes

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 21 / 25



Distributed vs. Shared Heap on Shared Memory Machines

Distrib. vs. Shared Heap on NUMA

On a 48-core, shared-memory NUMA architecture we observe:

Improved runtimes with GUMSMP using 10+ cores, compared to
GHC-SMP.

Significantly improved performance with GUMSMP using up to only 5
cores per PE

Drastic increase in GC percentage in GHC-SMP for large core numbers,
due to a larger live heap.

Lower allocation rate of GHC-SMP compared to GUMSMP, due to the
locking of the first generation

⇒ Using several small heaps, rather than one large heap, is consistently
better

⇒ Specifically, use 8 SMP-instances on 8 NUMA regions

2see paper submitted to TFP14
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Conclusions

Conclusion

GUMSMP was designed for high-performance computation on multilevel
architectures e.g. networks of multicores.

One design goal is: hierarchy aware load balancing
The main benefits of GUMSMP:

Scalable model
Efficient exploitation of distributed and shared memory on different levels of
the hierarchy
Single programming model

Improvements to work distribution mechanisms:
Low Watermark: reduces runtime by up to 57%.
Spark Segregation: ongoing work to reduce heap fragmentation.

On clusters speedups between 40 and 135 on up to 180 cores.

A distributed heap model is beneficial even on physical shared memory
systems⇒ use 8 SMP-instances on 8 NUMA regions
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Conclusions

Ongoing Work

Tune spark segregation to keep related data together (initial
improvements of heap fragmentation around 11%).
Evaluation of different spark select and spark export policies. In
particular, study:

1 The success rate of a policy.
2 Its effectiveness in improving performance and heap fragmentation.

Message Batching to reduce communication.
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Conclusions

GUMSMP

Thanks for Listening ..
Questions?
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