
GUMSMP: a multi-level parallel Haskell implementation

Malak Aljabri, Hans-Wolfgang Loidl, and Phil Trinder

The University of Glasgow - Heriot Watt University

Sep 6, 2014

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 1 / 25



Design of the GUMSMP Runtime System

Motivation

Parallel architectures are increasingly multi-level e.g. clusters of
multicores.
A hybrid parallel programming model is often used to exploit parallelism
across the cluster of multicores e.g. using MPI + OpenMP.
Managing two abstractions is a burden for the programmer and increases
the cost of porting to a new platform.

multicore multicore 

network 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 2 / 25



Design of the GUMSMP Runtime System

Contents

1 Design of the GUMSMP Runtime System

2 Scalability on a Multicore Cluster

3 Improvements to Load Balance: Low Watermarks

4 Improvements to Data Locality: Spark Segregation

5 Distributed vs. Shared Heap on Shared Memory Machines

6 Conclusions

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 3 / 25



Design of the GUMSMP Runtime System

GpH (Glasgow Parallel Haskell)

GpH is a conservative, parallel extension of Haskell, focussing on
stateless code.

Identify parallelism, do not control it (semi-explicit)!

Parallelism is expressed by two primitives added to the Haskell program:
par and pseq.

Evaluation strategies are abstractions over these basic primitives.

Example1: parmap f xs = map f xs ‘using‘ parList rdeepseq

1See AiPL14 summer school and “Seq no more” paper (Haskell’10)
Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 4 / 25



Design of the GUMSMP Runtime System

GpH Implementations
Three main GpH implementations (runtime-systems):

GHC-SMP - shared memory.
GHC-GUM - distributed memory.
GUMSMP - hybrid shared/distributed memory.

multicore multicore 

network 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 5 / 25



Design of the GUMSMP Runtime System

GpH Implementations
Three main GpH implementations (runtime-systems):

GHC-SMP - shared memory.
GHC-GUM - distributed memory.
GUMSMP - hybrid shared/distributed memory.

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 5 / 25



Design of the GUMSMP Runtime System

GpH Implementations
Three main GpH implementations (runtime-systems):

GHC-SMP - shared memory.
GHC-GUM - distributed memory.
GUMSMP - hybrid shared/distributed memory.

multicore multicore 

network 

GHC-GUM 

  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 5 / 25



Design of the GUMSMP Runtime System

GpH Implementations
Three main GpH implementations (runtime-systems):

GHC-SMP - shared memory.
GHC-GUM - distributed memory.
GUMSMP - hybrid shared/distributed memory.

multicore multicore 

network 

GUMSMP 

  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 5 / 25



Design of the GUMSMP Runtime System

Our System: GUMSMP

A multilevel parallel Haskell implementation for clusters of multicores.
Integrates the advantages of the two GpH implementations:

Cheap parallelism on one node (GHC-SMP)
Scalable parallelism on a cluster (GHC-GUM)

Implements virtual shared memory on a cluster.

Uses implicit synchronisation and on-demand communication.

Provides improvements for automatic load balancing.

Provides a single high-level programming model.

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 6 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-GUM
Load Balancing:

1 Searching for Local Work.
2 Searching for Remote Work.

PE1 

Scheduler  

PE2 

Scheduler  

PE3 

Scheduler  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 7 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-GUM
Load Balancing:

1 Searching for Local Work.
2 Searching for Remote Work.

PE1 

Scheduler  

PE2 

Scheduler  

PE3 

Scheduler  

FISH 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 7 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-GUM
Load Balancing:

1 Searching for Local Work.
2 Searching for Remote Work.

PE1 

Scheduler  

PE2 

Scheduler  

PE3 

Scheduler  

FISH FISH 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 7 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-GUM
Load Balancing:

1 Searching for Local Work.
2 Searching for Remote Work.

PE1 

Scheduler  

PE2 

Scheduler  

PE3 

Scheduler  

FISH FISH 

SCHEDULE 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 7 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-SMP
Load Balancing:

Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
The owner can push and pop from one end of the queue without
synchronization.
Other threads can steal from the other end of the queue.

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 8 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-SMP
Load Balancing:

Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
The owner can push and pop from one end of the queue without
synchronization.
Other threads can steal from the other end of the queue.

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 8 / 25



Design of the GUMSMP Runtime System

Work Distribution in GHC-SMP
Load Balancing:

Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
The owner can push and pop from one end of the queue without
synchronization.
Other threads can steal from the other end of the queue.

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 8 / 25



Design of the GUMSMP Runtime System

GUMSMP Work Distribution Mechanism

Work distribution of GUMSMP is hierarchy aware.
It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).
Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Scheduler 

Multicore 

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Multicore 

Scheduler 

Network 

PE1 PE2 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 9 / 25



Design of the GUMSMP Runtime System

GUMSMP Work Distribution Mechanism

Work distribution of GUMSMP is hierarchy aware.
It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).
Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Scheduler 

Multicore 

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Multicore 

Scheduler 

Network 

PE1 PE2 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 9 / 25



Design of the GUMSMP Runtime System

GUMSMP Work Distribution Mechanism

Work distribution of GUMSMP is hierarchy aware.
It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).
Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Scheduler 

Multicore 

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Multicore 

Scheduler 

Network 

FISH 
PE1 PE2 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 9 / 25



Design of the GUMSMP Runtime System

GUMSMP Work Distribution Mechanism

Work distribution of GUMSMP is hierarchy aware.
It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).
Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Scheduler 

Multicore 

Thread 2 

CPU 1 

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Multicore 

Scheduler 

Network 

FISH 

SCHEDULE 

PE1 PE2 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 9 / 25



Scalability on a Multicore Cluster

Speedup Results on a Multicore cluster

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90  100

S
p
e
e
d
u
p

No. Cores

GUMSMP Speedup for 8 Benchmarks

parmapfib
parfib

sumEuler
coins

worpitzky
Minimax
Mandel

Maze
blackscholes

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 10 / 25



Scalability on a Multicore Cluster

Scalability Results on a Multicore cluster

 0

 20

 40

 60

 80

 100

 120

 140

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

S
p
e
e
d
u
p

No. Cores

Scalability Results for GUMSMP

parfib
blackscholes

sumEuler
Maze

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 11 / 25



Improvements to Load Balance: Low Watermarks

GUMSMP’s Improved Work Distribution

We use watermarks for more flexible load balancing, with pre-fetching:

The system aims to keep the spark pool size between low- and
high-watermark.

Below low-watermark: pre-fetch work from a another processor.

Above high-watermark: off-load work to another processor.

Low Watermark

Spark Pool

High Watermark

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 12 / 25



Improvements to Load Balance: Low Watermarks

Load Balance without low watermarks

Mandelbrot with input  -2.0 -2.0 2.0 2.0 4096 4096 3024  on 16 PEs, 5 cores each, and noLWM policy GUMSMP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

Average Utilisation between 40% and 49%Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 13 / 25



Improvements to Load Balance: Low Watermarks

Effectiveness with of low watermarks

Mandelbrot with input  -2.0 -2.0 2.0 2.0 4096 4096 3024  on 16 PEs, 5 cores each, and LWM policy GUMSMP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

Average Utilisation between 84% and 146% Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 14 / 25



Improvements to Load Balance: Low Watermarks

Speedups with and without low watermarks

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90  100

S
p
e
e
d
u
p

No. of Cores

GUMSMP Speedup for the Micro-Benchmarks (LWM Vs No LWM)

parfib-LWM
parfib-noLWM

sumEuler-LWM
sumEuler-noLWM

coins-LWM
coins-noLWM

worpitzky-LWM
worpitzky-noLWM

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 15 / 25



Improvements to Load Balance: Low Watermarks

Low watermarks: load balance

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80  90  100

S
p
e
e
d
u
p

No. of Cores

GUMSMP Speedup for the Benchmarks (LWM vs no-LWM)

Minimax-LWM
Minimax-noLWM

Mandel-LWM
Mandel-noLWM

Maze-LWM
Maze-noLWM

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 16 / 25



Improvements to Data Locality: Spark Segregation

GUMSMP’s Improved Data Locality
We use spark segregation to distinguish work by origin:

Original GUM design: all sparks are equal
Hierarchical GUMSMP design: use a separate import spark pool to
segregate sparks received from other processors from local sparks
Prefer either global or local sparks on export or thread creation (tunable).
Intuition: prefer local sparks where possible, to tackle heap fragmentation.

Network 

FISH 

SCHEDULE 

PE1 PE2 Scheduler 

Multicore 

Import 
Spark 
Pool 

Thread 1 

CPU 0  

Thread 2 

CPU 1  

Thread 3 

CPU 2  

Thread 1 

CPU 0  

Multicore 

Scheduler 

Thread 2 

CPU 1  

Thread 3 

CPU 2  

Import 
Spark 
Pool 

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 17 / 25



Improvements to Data Locality: Spark Segregation

Heap Fragmentation

One problem in a virtual shared heap is heap fragmentation: related
data-structures are on different nodes of the distributed system

High heap fragmentation results in frequent messaging.

We can measure heap fragmentation as the size of our internal
GIT-tables.

An import spark pool is designed to reduce heap fragmentation.

Initial results show a reduction in the GIT-table sizes around 11%.

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 18 / 25



Improvements to Data Locality: Spark Segregation

GUMSMP

GITPE 1 PE 2GIT
HeapHeap GA1.1

GA1.2

GA2.1
GA2.2

GA2.1

GA2.2

Normal Form (data)Fetchme (global indirection)Thunk (computation)

1

2 3

54

6

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 19 / 25



Distributed vs. Shared Heap on Shared Memory Machines

Distrib. vs. Shared Heap on NUMA
NUMA architectures pose a challenge to parallel applications.

Asymmetric memory latencies
Asymmetric memory bandwidth between different memory regions.

Memory access times between different NUMA regions2

node 0: 1: 2: 3: 4: 5: 6: 7:
0: 10 16 16 22 16 22 16 22
1: 16 10 22 16 22 16 22 16
2: 16 22 10 16 16 22 16 22
3: 22 16 16 10 22 16 22 16
4: 16 22 16 22 10 16 16 22
5: 22 16 22 16 16 10 22 16
6: 16 22 16 22 16 22 10 16
7: 22 16 22 16 22 16 16 10

Our goal: compare the performance of
parallel Haskell applications using
shared memory vs. distributed memory systems on
physically shared memory NUMA architectures.

2Measured using numactl -H
Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 20 / 25



Distributed vs. Shared Heap on Shared Memory Machines

Performance results

In each case, a total of 40 cores is used, and the difference is only in the
number of cores that are used per PE.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 5 8 10 20 40

%
 M

ax
im

um
 V

al
ue

s

number of cores per PE 

Runtimes

Parfib
Coins
SumEuler
Worpitzky
Maze
Mandel
Blackscholes

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 21 / 25



Distributed vs. Shared Heap on Shared Memory Machines

Distrib. vs. Shared Heap on NUMA

On a 48-core, shared-memory NUMA architecture we observe:

Improved runtimes with GUMSMP using 10+ cores, compared to
GHC-SMP.

Significantly improved performance with GUMSMP using up to only 5
cores per PE

Drastic increase in GC percentage in GHC-SMP for large core numbers,
due to a larger live heap.

Lower allocation rate of GHC-SMP compared to GUMSMP, due to the
locking of the first generation

⇒ Using several small heaps, rather than one large heap, is consistently
better

⇒ Specifically, use 8 SMP-instances on 8 NUMA regions

2see paper submitted to TFP14
Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 22 / 25



Conclusions

Conclusion

GUMSMP was designed for high-performance computation on multilevel
architectures e.g. networks of multicores.

One design goal is: hierarchy aware load balancing
The main benefits of GUMSMP:

Scalable model
Efficient exploitation of distributed and shared memory on different levels of
the hierarchy
Single programming model

Improvements to work distribution mechanisms:
Low Watermark: reduces runtime by up to 57%.
Spark Segregation: ongoing work to reduce heap fragmentation.

On clusters speedups between 40 and 135 on up to 180 cores.

A distributed heap model is beneficial even on physical shared memory
systems⇒ use 8 SMP-instances on 8 NUMA regions

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 23 / 25



Conclusions

Ongoing Work

Tune spark segregation to keep related data together (initial
improvements of heap fragmentation around 11%).
Evaluation of different spark select and spark export policies. In
particular, study:

1 The success rate of a policy.
2 Its effectiveness in improving performance and heap fragmentation.

Message Batching to reduce communication.

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 24 / 25



Conclusions

GUMSMP

Thanks for Listening ..
Questions?

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 25 / 25


	Design of the GUMSMP Runtime System
	Scalability on a Multicore Cluster
	Improvements to Load Balance: Low Watermarks
	Improvements to Data Locality: Spark Segregation
	Distributed vs. Shared Heap on Shared Memory Machines
	Conclusions

