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@ Parallel architectures are increasingly multi-level e.g. clusters of

multicores.

@ A hybrid parallel programming model is often used to exploit parallelism

across the cluster of multicores e.g. using MPI + OpenMP.
@ Managing two abstractions is a burden for the programmer and increases
the cost of porting to a new platform.
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GpH (Glasgow Parallel Haskell)

@ GpH is a conservative, parallel extension of Haskell, focussing on
stateless code.

@ Identify parallelism, do not control it (semi-explicit)!

@ Parallelism is expressed by two primitives added to the Haskell program:
par and pseq.

par :: a —>b —>b -— parallel composition

pseq :: a > b —-> Db -- sequential composition

X 'par'' y => vy

@ Evaluation strategies are abstractions over these basic primitives.

o Example1:parmap f xs = map f xs ‘using' parList rdeepseq

See AiPL14 summer school and “Seq no more” paper (Haskell'10)
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GpH Implementations

Three main GpH implementations (runtime-systems):
® GHC-SMP - shared memory.
® GHC-GUM - distributed memory.
@ GUMSMP - hybrid shared/distributed memory.
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Our System: GUMSMP

A multilevel parallel Haskell implementation for clusters of multicores.
Integrates the advantages of the two GpH implementations:

o Cheap parallelism on one node (GHC-SMP)
@ Scalable parallelism on a cluster (GHC-GUM)

Implements virtual shared memory on a cluster.
Uses implicit synchronisation and on-demand communication.
Provides improvements for automatic load balancing.

Provides a single high-level programming model.
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Work Distribution in GHC-GUM

Load Balancing:

@ Searching for Local Work.
© Searching for Remote Work.

PE1 PE2 PE3
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Load Balancing:

@ Searching for Local Work.
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/\m\

FISH FISH
—
PE1 PE2 PE3

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 7/25



Design of the GUMSMP Runtime System

HERIOT

Umversny EEWATT
QSgOW & universiTy

Work Distribution in GHC-SMP

Load Balancing:
@ Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
@ The owner can push and pop from one end of the queue without
synchronization.
@ Other threads can steal from the other end of the queue.
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@ Processor’s Spark Pool is implemented as a bounded work-stealing

queue.

@ The owner can push and pop from one end of the queue without

synchronization.

@ Other threads can steal from the other end of the queue.
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GUMSMP Work Distribution Mechanism

@ Work distribution of GUMSMP is hierarchy aware.

@ It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).

@ Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).
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@ Work distribution of GUMSMP is hierarchy aware.

@ It uses a work-stealing algorithm, through sending FISH message, on
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pools (inherited from GHC-SMP).
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Scalability on a Multicore Cluster

Speedup Results on a Multicore cluster

Speedup

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

90
80
70
60
50
40
30
20
10

GUMSMP Speedup for 8 Benchmarks

A Universit
ey ofGlasgov)\;

T T T T T T T
parmapfib ----+---
parfib —<—
sumeEuler @
coins —-#----
worpitzky - -4 -
Minimax - -® -
Mandel —-%—-
Maze ----+---
blackscholes

x’;:’/‘
il 7
‘@
A
_ A7
A- A&

e X DRI L
o L ]
| | | |
10 20 30 40 50 60 70 80 90 100
No. Cores
GUMSMP Sep6,2014  10/25



Scalability on a Multicore Cluster

Umversny FEWATT

Scalability Results on a Multicore cluster

Scalability Results for GUMSMP
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GUMSMP’s Improved Work Distribution

We use watermarks for more flexible load balancing, with pre-fetching:

@ The system aims to keep the spark pool size between low- and
high-watermark.

@ Below low-watermark: pre-fetch work from a another processor.
@ Above high-watermark: off-load work to another processor.

High Watermark

Spark Pool

Low Watermark
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Load Balance without low watermarks
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Effectiveness with of low watermarks
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Improvements to Load Balance: Low Watermarks

Speedups with and without low watermarks

Speedup
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Low watermarks: load balance

GUMSMP Speedup for the Benchmarks (LWM vs no-LWM)

30 T T T T T T T T T
Minimax-LWM - -m - l
Minimax-noLWM - - - - .
25 - Mandel-LWM —-x— - W
Mandel-noLWM —-—-— ke K TR gk e
Maze-LWM K=K '
20 - Maze-noLWM =
o
=)
§ 15 - -
& "2l

| | | |
0 10 20 30 40 50 60 70 80 90 100

No. of Cores
GUMSMP Sep 6, 2014

16/25

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)



Improvements to Data Locality: Spark Segregation

HERIOT

A Universit
of Glasgovz @WATT

P UNIVERSITY

GUMSMP’s Improved Data Locality

We use spark segregation to distinguish work by origin:
@ Original GUM design: all sparks are equal
@ Hierarchical GUMSMP design: use a separate import spark pool to
segregate sparks received from other processors from local sparks
@ Prefer either global or local sparks on export or thread creation (tunable).
@ Intuition: prefer local sparks where possible, to tackle heap fragmentation.

SCHEDULE
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Heap Fragmentation

One problem in a virtual shared heap is heap fragmentation: related
data-structures are on different nodes of the distributed system

High heap fragmentation results in frequent messaging.

We can measure heap fragmentation as the size of our internal
GlIT-tables.

An import spark pool is designed to reduce heap fragmentation.
Initial results show a reduction in the GlT-table sizes around 11%.
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Distributed vs. Shared Heap on Shared Memory Machines

Distrib. vs. Shared Heap on NUMA
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@ NUMA architectures pose a challenge to parallel applications.
o Asymmetric memory latencies

o Asymmetric memory bandwidth between different memory regions.
Memory access times between different NUMA regions?
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@ Our goal: compare the performance of
parallel Haskell applications using
shared memory vs. distributed memory systems on

physically shared memory NUMA architectures.

2

Measured using numactl -H
Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt)

GUMSMP

Sep 6, 2014

P UNIVERSITY

20/25



Distributed vs. Shared Heap on Shared Memory Machines

HERIOT

University
of Glasgow

Performance results

@ In each case, a total of 40 cores is used, and the difference is only in the
number of cores that are used per PE.
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Distrib. vs. Shared Heap on NUMA

On a 48-core, shared-memory NUMA architecture we observe:

@ Improved runtimes with GUMSMP using 10+ cores, compared to
GHC-SMP.

@ Significantly improved performance with GUMSMP using up to only 5
cores per PE

@ Drastic increase in GC percentage in GHC-SMP for large core numbers,
due to a larger live heap.

@ Lower allocation rate of GHC-SMP compared to GUMSMP, due to the
locking of the first generation

@ = Using several small heaps, rather than one large heap, is consistently
better

@ = Specifically, use 8 SMP-instances on 8 NUMA regions

2see paper submitted to TFP14
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Conclusion

@ GUMSMP was designed for high-performance computation on multilevel
architectures e.g. networks of multicores.

@ One design goal is: hierarchy aware load balancing

@ The main benefits of GUMSMP:
e Scalable model
o Efficient exploitation of distributed and shared memory on different levels of
the hierarchy
e Single programming model
@ Improvements to work distribution mechanisms:
o Low Watermark: reduces runtime by up to 57%.
o Spark Segregation: ongoing work to reduce heap fragmentation.
@ On clusters speedups between 40 and 135 on up to 180 cores.

@ A distributed heap model is beneficial even on physical shared memory
systems=> use 8 SMP-instances on 8 NUMA regions

Aljabri, Loidl, Trinder (Glasgow/Heriot-Watt) GUMSMP Sep 6, 2014 23/25



Conclusions

HERIOT

&Th| Umversn
asgovz E_‘WATT

W UNIVERSITY

Ongoing Work

@ Tune spark segregation to keep related data together (initial
improvements of heap fragmentation around 11%).

@ Evaluation of different spark select and spark export policies. In
particular, study:

@ The success rate of a policy.
@ lis effectiveness in improving performance and heap fragmentation.

@ Message Batching to reduce communication.
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Thanks for Listening ..
Questions?
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