
The Monad.Reader Issue 1

by Andrew J. Bromage 〈ajb@spamcop.net〉
and Autrijus Tang 〈autrijus@autrijus.org〉
and Kenneth Hoste 〈kenneth.hoste@UGent.be〉
and Simon D. Foster 〈u1sf@dcs.shef.ac.uk〉
and Sven Moritz Hallberg 〈pesco@gmx.de〉

Shae Erisson, editor.

Contents

Pseudocode: Natural Style 6
Programming and Writing . 6

Refactor aggressively . 7
Natural transformations . 8

Programming Challenge . 8

Pugs Apocryphon 1 – Overview of the Pugs project 10
What is this document about? . 10
What is Perl 6? . 10
Has Perl 6 been specified? . 10
What does ”Apocrypha” mean? . 10
What is the relationship between Apocrypha and the Perl 6 design documents? 11
Will Pugs implement the full Perl 6 specification? 11
Is Pugs free software? . 11
Is Pugs funded by the Perl Foundation? . 11
Where can I download Pugs? . 11
How do I build Pugs? . 11
What is Haskell? . 12
What is GHC? . 12
What is the Perl 6 bootstrapping problem? . 12
What was the initial bootstrapping plan? . 12
What was the revised bootstrapping plan? . 12
How can Pugs help Perl 6 to bootstrap? . 13
How can Pugs help the Perl 6 language design? 13
Why did you choose Haskell? . 13
Is Pugs a compiler or an interpreter? . 13
Which compiler backends do you have in mind? 13
Do you have a roadmap for Pugs development? 14
How portable is Pugs? . 14
How fast is Pugs? . 14
Is there a CPAN for Perl 6 modules? . 14
Can Pugs work with Perl 5 libraries? . 14
Can Pugs work with Haskell libraries? . 15
Can Pugs work with C libraries? . 15

2

I know Perl 5, but not Haskell. Can I develop Pugs? 15
I know Haskell, but not Perl 5. Can I develop Pugs? 15
I have learned some Perl 6. What can I do with Pugs? 15
Where can I learn more about Haskell? . 15
Where can I learn more about Perl 6? . 16
Where can I learn more about implementing programming languages? 16
I’d like to help. What should I do? . 16

An Introduction to Gtk2Hs, a Haskell GUI Library 17
Introduction . 17
What is Gtk2Hs? . 17
The example program: Memory, the game . 19
The GUI: Using Glade . 19
The code: reading the glade description . 20
The code: what’s after Glade . 22
The code: setting up communication . 22
The code: playing the game . 27
The code: playing with efficiency . 30
The game: really playing it . 30
Conclusion . 31

Implementing Web-Services with the HAIFA Framework 32
Introduction to HAIFA . 32
Components of HAIFA . 33

The Generic XML Serializer . 33
Hooks . 36
SOAP/1.1 . 37
Web-Service Publisher . 37

Putting it all together . 38
Future Components . 39

XML Schema . 39
WSDL . 40
Composite Web-services . 40

Conclusion . 40
References . 41
Listing of Factorial Web-Service . 42

Code Probe - Issue one: Haskell XML-RPC, v.2004-06-17 [1] 44
XML-RPC . 44
Haskell XML-RPC . 45
Literate Programming, almost . 45
Short Reference . 45
Low-Level Structs . 46
Meat of the Matter . 46

Conclusion . 46
References . 47

Pseudocode: Natural Style
By Andrew J. Bromage – email: ajb@spamcop.net

Welcome to Pseudocode!
This this series of articles (hopefully monthly, assuming that I get around to it) serves

two main purposes. Firstly, I’ll be presenting some“recreational programming” problems.
Some of these problems will to illustrate something specific. Others will be just because
it ticked my fancy, so to speak. Secondly, since I don’t keep a blog, this is my virtual
soapbox. You see, dear reader, I subscribe to the Usenet Theory of Finding Things Out:
Don’t ask, because people will ignore you. Post wrong information instead, and people
will rush to correct you. So read on for this month’s wrong information.

Programming and Writing

I have a confession to make. I used to be a Perl hacker.
It’s not something that I’m especially proud of. But, as Alan Perlis put it, if a language

doesn’t change the way you think about programming, it’s not worth knowing. In that
sense, being a reformed Perl hacker is something that I’m not ashamed of, either.

One of the things that I learned from Perl is the relationship between programming
languages and natural languages. In particular: Programming is writing.

This should be obvious, but all the best ideas are.
Back when I tutored undergraduate students, I was often asked what constitutes“good

style”. It’s a hard question to answer, especially about a language like Haskell which, at
the time, didn’t have a huge corpus of software to compare against. There was GHC,
but it wasn’t exactly a shining example of readability at the time. (A lot of it arguably
still isn’t.) A lot of it was written in monadic style, but was written before the advent of
constructor classes, let alone do-notation. First-year students find recursion hard enough
to understand, let alone that.

But for programming in a more common language, like C, the best analogy – and I
wish I could remember who taught me this – was to writing in a native language. You,
dear student, are being taught to write software. If we were teaching you to write novels,
we would expect you to have read a few novels written by other people first. So read
other peoples’ programs, but read them critically. Only this way will you learn “good
style”.

In my humble opinion, we don’t push this analogy far enough, though to our credit,
we do teach students some of its more important aspects. For example, we drum into

5

them the idea that your program must be readable above all else. Your program, dear
student, will be read by someone else, so try to make sure that they can. The typical
student, of course, only learns this valuable lesson by being the next person, several
months later. That was certainly true in my case.

The writing analogy holds for professionals, too. Henry James famously said: “All
writing is rewriting.” That’s also true of programming. All programming is reprogram-
ming, only we tend to use other terms, like “cleaning up”, “maintaining” or “refactoring”.

Refactor aggressively

A phenomenon which you occasionally find on the Haskell mailing lists is what I call
“micro-refactoring by committee”.

It starts when a newbie asks: “How can I improve this program?” Over the next couple
of days, suggestions arrive, each more interesting than the previous.

A conversation might start something like this:

Hi. Can someone critique this code for me? Thanks!

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

To which someone will point out:

Accumulator recursion is better in this case:

reverse xs = rev’ xs acc

where

rev’ [] acc = acc

rev’ (x:xs) acc = rev’ xs (x:acc)

To which someone will reply:

You should use foldl!

reverse xs = foldl snoc [] xs

where snoc xs x = x:xs

And on the conversation will go until the program looks something like this:

reverse = foldl (flip (:)) []

In the end, we’ll end up with an extremely short program, which the original poster,
being a newbie, requires a nontrivial amount of effort to decipher.

On one hand, this is a useful exercise. Acknowledging the multitude of ways to do
something is good. On the other hand, the end result is usually quite silly. Yes, it’s

great if we want to know the Kolmogorov complexity of reverse, but in our rush to
explore the solution space, I wonder if we’re sometimes forgetting the rule that we drum
into students: In writing code, readability is the most important thing!

Or maybe there are just more ex-Perl hackers out there in Haskell land that we care
to admit...

Natural transformations

If I may be so bold, I’m going to propose what I consider the most important rule of
programming style. It doesn’t trump other rules, but rather, it’s the rule which helps
you decide which other rules to apply.

The rule is: Be natural.

The biggest problem with the final version of reverse is that it’s unnatural. If I had
to write that function from scratch, and assuming that it wasn’t in the Prelude and I
didn’t already know the answer by heart, I would not do it that way.

Partly, my native language flows from left-to-right across the page, and I tend to view
any code which contains flip with deep suspicion, since it reverses the ”natural” order
for me.

Mostly, I strongly suspect that most code of this type is not written, but rather it’s
translated into. I tend to see many uses of “point-free style” in the same light. It’s also
one of the reasons why I’ve resisted using arrows: You don’t program in arrow style; you
program in diagrams on paper, then translate that into arrow style.

Any time you find yourself translating your code into some style, you increase the
chances that the “next person” (who, you will recall, may well be yourself) will have to
translate back into what you wrote originally.

Of course I don’t mean “keep what you first wrote”. If you’re a fallible human, then
the code that you write first certainly won’t be precisely the same as the code that gets
released. But it does suggest that every time you modify, refactor or otherwise transform
your code, you should be careful to maintain naturality. At any point, your program
should be something that you could have written first time, assuming you were a more
perfect programmer than you are.

Programming Challenge

Okay, enough ranting. On with this month’s problem.

Take a list S. Delete some elements from the list. What you have left is a subsequence
of S. For example, [1, 3, 2] is a subsequence of [2, 1, 2, 3, 2, 1, 3], because you can obtain
the former by deleting elements from the latter.

Consider the list [1, 2, 3, 1, 2, 3, 1]. This string contains all permutations of the list
[1, 2, 3] as subsequences. It is also minimal, in the sense that there is no shorter sub-
sequence which will do (though there are potentially many minimal subsequences). we
will call such a list a shortest supersequence over the alphabet [1..3].

Let S(n) be the length of the shortest supersequence over the alphabet [1..n]. The
task is to find out some interesting things about S(n). Any interesting thing will do,
but as a suggestion:

I Write a Haskell function to test if xs is a supersequence over the alphabet [1..n].
There’s an obvious algorithm which is O(n!length(xs)). Can you do better?

I Write a Haskell function to produce the shortest supersequence over the alphabet
[1..n].

I Find bounds on S(n). Clearly n is a lower bound. An upper bound is n2 − n + 1.
(Why?) Can you do better? How about a recurrence?

I For the alphabet [1..n], find bounds on the number of shortest supersequences. (It
must be a multiple of n!, for obvious reasons.)

Email your findings to me by the 22nd of March, 2005, for credit in next month’s The
Monad.Reader.

Pugs Apocryphon 1 –
Overview of the Pugs project
Autrijus Tang – email: autrijus@autrijus.org

The Pugs Apocrypha are a series of documents, written in question/answer format, to
explain the design and implementation of Pugs. This document (PA01) is a higher-level
overview of the project.

What is this document about?

The Pugs Apocrypha are a series of documents, written in question/answer format, to
explain the design and implementation of Pugs. This document (PA01) is a higher-level
overview of the project.

What is Perl 6?

Perl 6 is the next major revision of Perl, a context-sensitive, multi-paradigmatic, prac-
tical programming language, designed by a team led by Larry Wall. The Pugs project
has been enthusiastically welcomed by the Perl 6 team.

Has Perl 6 been specified?

By December 2004, most of Perl 6 has been specified as a series of Synopses. Although
not considered final, it is now stable enough to be implemented. Many of the Syn-
opses are based on Larry’s Apocalypses. Sometimes the design team releases Exegeses,
which explain the meaning of Apocalypses. Pugs adheres to the Synopses, referring to
Apocalypses or Exegeses when a Synopsis is unclear or imprecise.

What does ”Apocrypha”mean?

The word Apocrypha, from the Greek �pìkrufoc, ”hidden”, refers to religious works
that are not considered canonical, or part of officially accepted scripture. The proper
singular form in Greek is Apocryphon.

9

What is the relationship between Apocrypha and the
Perl 6 design documents?

Apocalypses and Synopses cover the Perl 6 language in general; Apocrypha are specific to
the Pugs implementation. Like Parrot Design Documents, Apocrypha will be constantly
updated according to the status of Pugs.

Will Pugs implement the full Perl 6 specification?

Yes. Pugs always targets the latest revision of Perl 6 Synopses. As soon as a new revision
or a new Synopsis is published, incompatibilities between Pugs and the new version will
be considered bugs in Pugs.

Is Pugs free software?

Yes. It is available under both GPL version 2 and Artistic License version 2.0b5. Once
the final version of Artistic 2.0 is released, Pugs will adopt it.

Is Pugs funded by the Perl Foundation?

No. After receiving three Perl Foundation grants on various projects, Autrijus decides
it would be more helpful to donate time to the Perl 6 project by hacking Pugs, rather
than asking TPF for money to do the same thing.

Where can I download Pugs?

For the very latest version of Pugs, check out the source from Subversion or darcs
repositories. Periodic releases are available on CPAN under the Perl6-Pugs namespace.
(By the way, if you’d like offline working with the Subversion repository, the svk client
may be of interest. But using vanilla svn is fine.)

How do I build Pugs?

Pugs uses the standard Makefile.PL build system, as detailed in the README file. Since
Pugs is written in Haskell, you will need Glasgow Haskell Compiler (GHC) 6.2 or above.
Please download a binary build for your platform; compiling GHC from source code can
take a very long time.

What is Haskell?

Haskell is a standardized, purely functional programming language with built-in lazy
evaluation capabilities. While there are several different implementations available, cur-
rently Pugs needs to be built with GHC, because it uses several GHC-specific features.

What is GHC?

GHC is a state-of-the-art compiler and interactive environment, available under a BSD-
style license. Itself written in Haskell, GHC can compile Haskell to bytecode, C code,
and machine code on some platforms. GHC has an extensive library, numerous language
extensions, and a very capable optimizer (with some help from a Perl 5 program). As
such, it provides an excellent platform to solve Perl 6’s bootstrapping problem.

What is the Perl 6 bootstrapping problem?

The goal of the Perl 6 project is to be self-hosting: The Perl 6 compiler needs to be
written in Perl 6 itself, and must parse Perl 6 source code with Perl 6 Rules, which is a
subset of the Perl 6 language. The generated code must also contain an evaluator that
can execute Perl 6 code on the fly. The only way to break this cycle of dependency is
by first implementing some parts in other languages, then rewrite those parts in Perl 6.

What was the initial bootstrapping plan?

According to the Parrot FAQ, the initial plan was to bootstrap via Perl 5: First we
extend Perl 5 to run on the Parrot virtual machine (via B::Parrot or Ponie), and then
implement the Perl 6 compiler in Perl 5, which will be translated to Perl 6 via a p5-to-
p6 translator. However, although part of the Rule system was prototyped in Perl 5 as
Perl6::Rules, it was not mature enough to build a compiler on. As such, the plan was
revised to bootstrap via C instead.

What was the revised bootstrapping plan?

According to an early 2005 proposal, the plan is to first implement the Rule engine in C
(i.e. PGE), use it to parse Perl 6 into Parrot as an abstract syntax tree (AST), and then
implement an AST evaluator as part of Parrot. Ponie and p5-to-p6 are still in progress,
but they are no longer critical dependencies in the bootstrapping process.

How can Pugs help Perl 6 to bootstrap?

In a bootstrapping process, there are often many bottlenecks, which prevent people from
working on things that depend on them. For example, one cannot easily write unit tests
and standard libraries for Perl 6 without a working Perl 6 implementation, or work on
an AST evaluator without an AST interface. Pugs solves such deadlocks by providing
ready substitutes at various level of the process.

How can Pugs help the Perl 6 language design?

Inconsistencies and corner cases in the specification are very hard to spot without a
working implementation. However, if a design problem is found late into the implemen-
tation, it may require costly re-architecture for everything else. By providing a working
Perl 6 implementation, Pugs can serve as a proving ground to resolve problems as early
as possible, as well as encourage more people to exercise Perl 6’s features.

Why did you choose Haskell?

Many Perl 6 features have similar counterparts in Haskell: Perl 6 Rules corresponds
closely to Parsec; lazy list evaluation is common in both languages; continuation support
can be modeled with the ContT monad transformer, and so on. This greatly simplified
the prototyping effort: the first working interpreter was released within the first week,
and by the third week we have a full-fledged Test.pm module for unit testing.

Is Pugs a compiler or an interpreter?

Similar to Perl 5, Pugs first compiles Perl 6 program to an AST, then executes it using
the built-in evaluator. However, in the future Pugs may also provide a compiler interface
that supports different compiler backends.

Which compiler backends do you have in mind?

If implemented, the first compiler backend will likely generate Perl 6 code, similar to
the B::Deparse module. The next one may generate Haskell code, which can then be
compiled to C by GHC. At that point, it may make sense to target the Parrot AST
interface. We can also add other backends (such as Perl 5 bytecode) if people are willing
to work on them.

Do you have a roadmap for Pugs development?

The major/minor version numbers of Pugs converges to 2π; each significant digit in the
minor version represents a milestone. The third digit is incremented for each release.
The current milestones are:

I 6.0: Initial release.
I 6.2: Basic IO and control flow elements; mutable variables; assignment.
I 6.28: Classes and traits.
I 6.283: Rules and Grammars.
I 6.2831: Role composition and other runtime features.
I 6.28318: Macros.
I 6.283185: Port Pugs to Perl6, if needed.

How portable is Pugs?

Pugs runs on Win32, Linux and many flavors of Unix systems. See GHC’s porters list
and download page for details. Starting from 6.2.0, the Pugs team will also provide
binary builds on selected platforms.

How fast is Pugs?

The parser part of Pugs is very fast, due to its robust underpinning in Parsec. However,
the Pugs evaluator is currently not optimized at all: dispatching is around 1000 operators
per second on a typical PC, which is nearly 100 times slower than Perl 5. Still, it is fast
enough for prototyping language features; if you need fast operations in Pugs, please
consider helping out the Compiler backend.

Is there a CPAN for Perl 6 modules?

Currently, Pugs searches for Perl 6 libraries under the Perl6::lib namespace in the
Perl 5 search path. For example, the Test module is installed as Perl6/lib/Test.pm in
Perl 5’s site library path. This is a temporary measure; we expect more robust solutions
in the future.

Can Pugs work with Perl 5 libraries?

Not yet. However, we may write a Inline::GHC module in the future, allowing interac-
tion between Perl 5 modules and Haskell modules, similar to Autrijus’ previous work on
Inline::MzScheme; if that happens, then it is trivial to build Inline::Pugs on top of
it. Alternatively, we may implement a Perl 5 source code parser that emits Pugs AST
code, which will make pure Perl modules work on Pugs. Finally, it is also conceivable
to compile Pugs AST into Perl 5 AST, but that is even more speculative.

Can Pugs work with Haskell libraries?

Currently, you can statically link Haskell libraries into Pugs primitives, by modifying a
few lines in Prim.hs. We are considering writing a simple interface to hs-plugins, which
will let Pugs dynamically load Haskell libraries, even inline Haskell code directly within
Perl 6.

Can Pugs work with C libraries?

Not yet. However, HaskellDirect seems to provide an easy way to interface with C,
CORBA and COM libraries, especially when combined with hs-plugins described above.

I know Perl 5, but not Haskell. Can I develop Pugs?

Sure! The standard libraries and unit tests that come with Pugs are coded in Perl 6,
and there is always a need for more tests and libraries. All you need is basic familiarity
of Perl 5, and a few minutes to get acquainted with some small syntax changes. You
will likely pick up some Haskell knowledge along the way, too.

I know Haskell, but not Perl 5. Can I develop Pugs?

Sure! Perl 6 and Haskell have many things in common, such as type-based function
dispatch, first class functions and currying, so picking up the syntax is relatively easy.
Since there are always some TODO tests for features in need of implementation, it is
never hard to find something to do.

I have learned some Perl 6. What can I do with Pugs?

Look at the examples/ directory to see some sample programs. Some people are already
writing web applications and report systems with Pugs. If you run into a missing feature
in Pugs, please let us know so we can implement it.

Where can I learn more about Haskell?

The Haskell homepage and the Wiki are good entry points. Of the many online tutorials,
Yet Another Haskell Tutorial is perhaps the most accessible. Due to the ubiquitous use
of Monad transformers in Pugs, All About Monads is also recommended. For books,
Algorithms: A Functional Programming Approach, Haskell: The Craft of Functional
Programming and The Haskell School of Expression are fine introductory materials.
Finally, the #haskell channel on freenode is full of helpful and interesting people.

Where can I learn more about Perl 6?

The Perl 6 homepage provides many online documents. Every week or two, a new Perl
6 list summary will appear on Perl.com; it is a must-read for people who wish to follow
Perl 6’s progress. For books, Perl 6 and Parrot Essentials and Perl 6 Now are both
helpful.

Where can I learn more about implementing
programming languages?

Types and Programming Languages is an essential read; Pugs started out as a self-
initiated study of the text, and it continues to be an important guide during the im-
plementation. Its sequel, Advanced Topics in Types and Programming Languages, is
also invaluable. It may also help to get acquainted with other multi-paradigmatic lan-
guages, such as Mozart/Oz, Curry and O’Caml. Finally, the detailed GHC commentary
describes how GHC itself was implemented.

I’d like to help. What should I do?

First, subscribe to the perl6-compiler mailing list by sending an empty mail to perl6-
compiler-subscribe@perl.org. Next, join the #perl6 IRC channel on irc.freenode.net to
find out what needs to be done. Commit access is handed out liberally; contact the Pugs
team on #perl6 for details. See you on IRC!

An Introduction to Gtk2Hs, a Haskell
GUI Library
By Kenneth Hoste – email: kenneth.hoste@UGent.be

This article is an introduction to Gtk2Hs, one of many Haskell GUI libraries. We
introduce the library by means of a small example, which we will build from scratch
during this article. The emphasis is on the Gtk2Hs related code.

Introduction

Since this article is an introduction to Gtk2Hs, we will start with some words on the
library itself: the structure of the library, its advantages and disadvantages, and how to
install and use it.

In order to make the explanation of the basic principles behind Gtk2Hs a little bit
easier, we use an example application: the Memory game. The code needed to run the
application was written to serve as example code for this article, and thus is not meant
to be fully working, or even bug-free.

Because one of the big advantages of the Gtk2Hs library is the support of Glade, we
show how we can access a GUI description created with Glade. The main part discusses
the Gtk2Hs related functionality of the Memory application. This includes setting up
communication between the different parts of the program. We show how we can ensure
the interaction with the user runs smoothly.

To conclude the article, we review the important items we discussed, and try to see
what the future could bring us.

What is Gtk2Hs?

As we mentioned above, Gtk2Hs is a GUI library for Haskell. It is based on Gtk+
(version 2.6), a multi-platform toolkit for creating graphical user interfaces. Some of its
features we use in this article include nearly complete coverage of the Gtk+ toolkit, API
documentation (still in development), bindings for several Gnome modules (more specif-
ically: libglade for loading GUIs from xml files at runtime, GConf for storing application
preferences and SourceView, a source code editor widget with syntax highlighting), sup-
port for GNU/Linux, Mac OS X and Windows platforms, . . .

16

The library has reached version 0.9.7, and thus is still largely under development.
Support for using the library can be found on the Gtk2Hs mailing list. When this article
is published, a fully working 0.9.7.1 build for Windows should be available. Instructions
on how to install Gtk2Hs on Windows are available on the website (http://gtk2hs.
sourceforge.net/archives/2005/02/17/installing-on-windows). The API is quite
useful already, although it doesn’t contain all the desired information.

When talking about a GUI library, it is often useful to first explain some of the used
terminology, as we do not expect everybody to be familiar with several of the UI terms
we use in this article, such as (cfr. Wikipedia):

I widget: a component of a graphical user interface that the user interacts with.
Examples: button, label, scroll bar, . . .

I container: a widget which is able to contain other widgets
I box: a container which aligns all of its widgets either in a vertical or horizontal

way
To use Gtk2Hs in a Haskell program, you should install Gtk2Hs and import the

Gtk2Hs modules you need. For the Windows platform (and maybe others too), this
installation will require Gtk+ to be installed (to install Gtk+ on the Windows platform,
see gladewin32.sourceforge.net), and to be able to use the Glade functionality, you should
also have Glade installed (more information, see the ’Using Glade’ section).

Once everything is installed properly, it should suffice to add an import statement at
the beginning of the program code, i.e.:

import Graphics.UI.Gtk

This lets the Haskell compiler know we want to use the functionality provided by the
Gtk2Hs package.

Some people would argue that there are dozens of Haskell GUI libraries out there, so
why would this one be any better than the rest? To point out the advantages of Gtk2Hs
over other Haskell GUI libraries, we give a brief overview of what Gtk2Hs does better
than most of the other libraries:

I Glade support First of all, using Glade you can design a GUI visually rather than
having to write code. This allows one to follow the HIG (the Gtk/Gnome Human
Interface Guidelines: http://developer.gnome.org/projects/gup/hig) much
more easily. It also allows Gtk2Hs to read the GUI definition at runtime. When
the user wants to change some small things about the GUI, or even completely
re-design it, no recompiling of the Haskell code is needed. Just make sure the new
*.glade file has the same name as the last one, and contains the same widgets (with
the same names) as the last GUI definition.

I API reference documentation An API is a tool which every serious developer
needs. The Gtk2Hs tool which is available now, isn’t complete yet, but several
people are putting a lot of effort into it. The Gtk+ API (http://gtk.org/api)
could also be of some help, since Gtk2Hs is a mapping of the Gtk+ functionality
to Haskell.

I Unicode support

http://gtk2hs.sourceforge.net/archives/2005/02/17/installing-on-windows
http://gtk2hs.sourceforge.net/archives/2005/02/17/installing-on-windows
http://developer.gnome.org/projects/gup/hig
http://gtk.org/api

I Memory management
I Bindings for the Mozilla browser rendering engine

To conclude this section, we list some of the other Haskell GUI libraries available.
I wxHaskell (wxhaskell.sourceforge.net) - built on top of wxWidgets, a comprehen-

sive C++ library across all major GUI platforms, including Gtk, Windows, X11
and Mac OS X

I FranTk (haskell.org/FranTk) - a declarative library for building GUIs in Haskell,
running on top of Tcl-Tk (working via TclHaskell)

I HToolKit (htoolkit.sourceforge.net) - a portable Haskell library for writing graph-
ical user interfaces. To ensure portability, the library is built upon a low-level
interface PORT, which is currently implemented for Gtk and Windows.

I Other (haskell.org/libraries/#guigs) - check here for information about other Haskell
GUI library projects

The example program: Memory, the game

Before we show how to code the example we’re using, let’s see what it is supposed to do.

The Memory game is a simple card game. The goal of the game is find all pairs of
equal images on the cards, which are all upside down when the game starts. We will
allow the user to set the game level between 1 and 9. The level indicates how many pairs
the deck of cards has: level 1 means just one pair (very easy), level 9 means nine pairs
(quite ’hard’). When the user has set a level, he should be able to start a new game.
We will use a control panel to provide this functionality.

In order to play the game, the player must be able to flip cards over, and see what
picture is on them. Once he has flipped over two cards (and thus has tried to find a
pair), the program should decide whether the cards match or not. When the player flips
over another card, the game should visualise the match by means of some picture (in
our case, a smiley icon), or just flip the cards back again when there was no match.

As a teaser, we show a screenshot of the Memory game which we have written. Some
cards have been matched, two cards are flipped over (but no match is found), and the
rest of the cards are upside down. On the right, the control panel is shown where the
user can adjust the game level and/or start a new game.

The GUI: Using Glade

Glade is a tool to create XML descriptions of a graphical user interfaces. Using Glade,
it is not necessary to write application code to construct GUIs. Moreover, it lets us
redesign the GUI appearance without having to touch the code. No knowledge of Glade
is needed to be able to understand this article. It was used to demonstrate one of many
features of Gtk2Hs.

If you want to find out more about the use of Glade, check out the following urls:
http://glade.gnome.org for GNU/Linux, or http://gladewin32.sourceforge.net

http://glade.gnome.org
http://gladewin32.sourceforge.net

Figure 1: Screenshot of the Memory game

for the Windows platform).

The code: reading the glade description

After using Glade to create the GUI, it is necessary to load the description of the various
widgets in the GUI before they can be used, e.g. to define the communication between
widgets, in an interactive application written in Haskell.

To make the Glade functionality available in Haskell, we should import the Glade
module defined in the Gtk2Hs library first:

import Graphics.UI.Gtk.Glade

The first thing to do before loading the widgets defined in the Glade description, is to
load the description itself. Because the *.glade file is needed to run the application, we
include a check too see whether the description file can be found where it is expectedx.
As such, we can inform the user with an appropriate error message if no conforming
Glade file is available.

The load the file, we use the xmlNew function provided by the Glade module in the
Gtk2Hs library. The Maybe module makes an excellent tool to help us check if the file
was available. If it was, we use the description it contains. Otherwise, we throw an
error, which will inform the user of what went wrong.

windowXmlM <- xmlNew "memory.glade"

let windowXml = case windowXmlM of

(Just windowXml) -> windowXml

Nothing -> error "Can’t find the glade file \"memory.glade\"

in the current directory"

Now we are able to access the GUI description from within our code. This allows us
the load the widgets defined in the description, using the xmlGetWidget function. When
using Glade, one should try to define the widget as it should appear, only using Glade.
That way, no adjustments have to be made when loading the widgets in Haskell.

window <- xmlGetWidget windowXml castToWindow "window"

onDelete window deleteEvent

onDestroy window destroyEvent

controlPanel <- xmlGetWidget windowXml castToVBox "control panel"

entry <- xmlGetWidget windowXml castToEntry "number of pictures"

button <- xmlGetWidget windowXml castToButton "new game button"

label <- xmlGetWidget windowXml castToLabel "message label"

labelSetText label "\nNothing set."

boardAlignment <- xmlGetWidget windowXml castToAlignment "board content"

board <- xmlGetWidget windowXml castToVBox "cards"

As you can see, some extra code is needed besides simply loading the widgets.
Because a window doesn’t react on click actions by default, we have to define what

has to happen when the user closes the window. E.g. when a window is closed, the
delete-event is thrown by Gtk+. For handling this event, the onDelete function is used
to define which function should be executed when the window is closed.

We also have to define the deleteEvent function, which is called whenever a delete-
event is thrown. Our implementation is quite simple: there is nothing we need to do
when the user closes the window, besides killing the process showing it. To achieve this,
we can simply return False, which will result in a destroy-event being thrown for the
window. This behavior is the same as the default behavior, so if we wouldn’t provide
this, the window would be destroyed anyway. We mention it here explicitly to illustrate
how the system works.

deleteEvent :: Event -> IO Bool

deleteEvent _ = do return False

In order to catch this destroy-event, we should use the onDestroy function (see above),
in combination with the definition of the destroyEvent function (analogous to the
delete-event). The latter just executes mainQuit (provided in the General module of
Gtk2Hs), which will result in exiting the main loop (and thus killing the application).

destroyEvent :: IO()

destroyEvent = do mainQuit

The last line of extra code, is quite straightforward. It sets the default text on the
messagelabel to “Nothing set.”, to show the user the application has just started, and no
game level is set yet (which we will need in order to start a new game).

The code: what’s after Glade

When all the widgets are loaded, there’s still some work to do before we can show the
GUI. Because we are building an interactive game application, we should be able to track
what the user is doing (i.e. keep track of the game state). Haskell provides a handy
’tool’ for that purpose: IORef. Because we are building a GUI, most of our code will be
executed in the IO monad. Therefore, we can’t just pass along some variable and expect
every function to notice the change. The IORef module (available in the Data package of
Haskell), provides a solution for this problem. We can read and write from/to a IORef,
and thus share the variable with different functions.

The use of IORef is what distinguishes low/medium level libraries like Gtk2Hs and
wxHaskell from high level libraries like FranTk and Fruit. The latter have various
abstractions to avoid or hide the use of IORefs.

Throughout the program, we use a single IORef variable to keep track of the state.
At the start of the program, we put this IORef in a well known state:

state <- newIORef (State Nothing Nothing 0)

In the IORef, we use a new data type State, that contains all the information we
need about the game state, and which is declared as follows:

data State = State (Maybe ToggleButton)

(Maybe (Bool,ToggleButton, ToggleButton)) Int

The first of its arguments may contain a card which is flipped (or nothing when no
card is flipped, that’s why we use the Maybe monad). The second argument may contain
a pair of cards which was tested for a match the last time (or again, nothing when no
pair is available). The result of the match test is also available is this argument. The
last argument contains the number of pairs of cards left to find, in order to be able to
detect when the game is finished (i.e. when no pairs are left to find).

To complete the definition of main, we should add the following code:

onClicked button ...

widgetShowAll window

mainGUI

The onClicked part is discussed in the next section. The two last lines of code are
needed to show all the widgets in the window, including the window itself (widgetShowAll
window) and preparing the GUI for user interaction (mainGUI).

The code: setting up communication

The only piece of code of the main function we have not discussed yet, is the onClicked

part mentioned earlier. This part defines what should happen when the “New game”

button is pressed. Obviously, when there’s more than one button in the GUI, the function
onClicked should be defined for every button.

We first give the entire definition of the onClicked function, and then dissect is
piecewise.

onClicked button $ do

entryText <- entryGetText entry

let text = filter (not.isSpace) entryText

check = (not $ null text) && null (tail text) && isDigit (head text)

if (check) then

do board <- vBoxNew True 1

cards <- startNewGame (read text :: Int) label state

gameBoard <- createBoard cards state

boxPackStart board gameBoard PackNatural 0

children <- containerGetChildren boardAlignment

if (not $ null children) then containerRemove boardAlignment

(head children)

else return()

containerAdd boardAlignment board

widgetShowAll window

else

do children <- containerGetChildren boardAlignment

if (not $ null children) then

containerRemove boardAlignment (head children)

else return()

widgetShowAll window

Before the level entered by the user is used, it is paramount to check if the text entered
in the entry field is correct.

We could avoid this with using a spin box (which would allow only values between 1
and 9) instead of an entry field. This would be much easier, but using an entry field
allows us to show some additional aspects of Gtk2Hs (removing widgets from a box,
what to do when unexpected user input is given, . . .).

First of all, we filter out all the spaces (to avoid unnecessary error messages).

entryText <- entryGetText entry

let text = filter (not.isSpace) entryText

To check if the entered text is correct, we use the boolean variable check. First of all,
we check if the text (without spaces) is 1 character long (because we only allow a level
between 1 and 9). Then, we check if the character is a digit, using the isDigit function
provided in the Char module.

check = (not $ null text) && null (tail text) && isDigit (head text)

Depending on the value of check, we decide what to do.
When the text entered is not correct (for example when a word is entered, or some

non-numeric symbol), we should clear the game board (because it is possible another
game was being played when the new game is started, and the current game should be
removed from the board).

labelSetText label ("\nPlease enter a level between\n1 and

9 to set the game level.")

children <- containerGetChildren boardAlignment

if (not $ null children) then

containerRemove boardAlignment (head children)

else

return()

widgetShowAll window

To clear the board, we simply remove all the widgets on it. In our implementation, the
game board itself is created in a frame (a Gtk widget). On this frame, we have put a box
container, in which all the cards are aligned. To clear the game board, it is thus sufficient
to remove (and redraw) that box. For obtaining said box, the containerGetChildren

function is used. This function returns a list of all the widgets that have been added to
a container (an argument of the function). As shown above, the box is contained in a
frame, and thus the box can be found among the children of the frame alignment. Since
removing the box from the alignment actually equates to clearing the board, we must
make sure the alignment is not empty before we try to obtain the first element of its
children. Obviously, if that case, the code would try to take the head of an empty list,
which would result in an abnormal termination of the program, or at least in a runtime
error. Finally, to show the change, we add a call to the widgetShowAll function, with
the entire window as its argument. The new widgets are created in a hidden state,
so a function should be called in order to make them visible. We could have called
widgetShowAll only on new widgets, but to avoid clutter, we chose the implementation
shown above.

To inform the user what went wrong, we also show a suitable message on the provided
label, using the labelSetText function.

When the entered text was correct, we need to show a new game board ready to play
the game with the desired number of cards. In order to do this, we have to clear the
board (analogous to the case above) and add the new deck of cards.

let level = (read text :: Int)

labelSetText label ("\nNew game started (level: "++(show level)++").")

cards <- buildNewGame level state

cardsBox <- fillBox cards state

children <- containerGetChildren boardAlignment

if (not $ null children) then

containerRemove boardAlignment (head children)

else

return()

containerAdd boardAlignment cardsBox

widgetShowAll window

To ensure our code remains readable, we implemented the process of showing a new
board in several separate functions. First we describe what happens, then we take a
closer look at the steps taken to get the desired result.

The game level is entered as text, i.e. a string, and thus must be converted to an
integer value. Next to that, we want to show a nice message on the label we provided for
this purpose. The buildNewGame function yields the requested deck of cards. This deck
is then used to build the box, which was mentioned earlier and which will contain the
game cards. Building this box is done by the fillBox function. It is paramount that
we pass along the IORef representing the game state, because this state will be needed
by the function that deals with ‘card clicks’.

Now, let’s look at the definition of the buildNewGame and fillBox functions.

buildNewGame :: Int -> IORef State -> IO Board

buildNewGame n state = do

writeIORef state (State Nothing Nothing n)

let imagesPart = take n getImages

images = imagesPart ++ imagesPart

case n of

1 -> return (Board 2 1 images)

2 -> return (Board 2 2 images)

...

9 -> return (Board 5 4 images)

The buildNewGame function returns all the information needed to visualize the game
board with a certain level (the number of different card pairs). For that purpose, we
defined a Board datatype, containing the number of rows and columns of the game
board, and a list of the names of the images for every card on the game board.

data Board = Board Int Int [String]

First, buildNewGame sets the game-state to a well-known default value, and builds a
list of image-names, as many as needed according to the chosen game level. To keep the
example simple, we use a function which returns a static list of image-names.

getImages :: [String]

getImages = ["1.jpg","2.jpg","3.jpg","4.jpg",

"5.jpg","6.jpg","7.jpg","8.jpg"," 9.jpg"]

Depending on the chosen game level, the board layout will be chosen (the number of
rows/columns).

The other function we need to define, is the fillBox function.

fillBox :: Board -> IORef State -> IO VBox

fillBox (Board w 1 list) state = do

...

fillBox (Board w 2 list) state = do

...

fillBox (Board w 3 list) state = do

vBox <- vBoxNew True 1

addHBoxToVBox w vBox (take w list) state

addHBoxToVBox w vBox (take w (drop w lis t)) state

addHBoxToVBox w vBox (drop (2*w) list) s tate

return vBox

fillBox (Board w 4 list) state = do

...

This function will use the list of image names in the Board datatype to fill the box that
represents the game board. The definition of fillBox depends on the number of rows
needed to represent the game board. Every board consists of a vertical box containing
a number of horizontal boxes of equal width. We show the definition of fillBox for a
game board with 3 rows. A new vertical box is created, and then the horizontal boxes
are added using the addHBoxToVBox function. We have to make sure we provide the
right sublist containing the image-names.

addHBoxToVBox :: Int -> VBox -> [String] -> IORef State -> IO()

addHBoxToVBox w vBox list state = do

hBox <- hBoxNew True w

fillRow hBox list state

boxPackStartDefaults vBox hBox

The addHBoxToVBox function just creates a new horizontal box of given width w, fills
it with togglebuttons (using the fillRow function), and adds it to the vertical box also
provided.

fillRow :: HBox -> [String] -> IORef State -> IO()

fillRow box [] state = do return ()

fillRow box (l:ls) state = do

button <- toggleButtonNew

widgetSetName button $ l

containerSetBorderWidth button 2

image <- imageNewFromFile "back.jpg"

containerAdd button image

onToggled button (buttonToggled button state)

boxPackStartDefaults box button

fillRow box ls state

The fillRow function creates a new togglebutton for every string in the given list with
image-names. The name of the button is set to the image name (using widgetSetName),
so when the togglebutton is clicked, we are able to show the image ’hidden’ behind
it. To start with, a default image is added to the togglebutton. We also define which
function should be executed when the button is toggled (buttonToggled, see below),
and of course the button is added to the horizontal box provided.

The code: playing the game

buttonToggled :: ToggleButton -> IORef State -> IO()

buttonToggled button stateRef = do

state <- readIORef stateRef

name <- widgetGetName button

pressed <- toggleButtonGetActive button

treatClick stateRef name button state pressed

The buttonToggled function just collects some information about the button which
was toggled: the name of the button and the state of the button (pressed/unpressed).
We also need the current game state. The actual actions which need to be executed
when a button was toggled, are defined in the handleClick function.

handleClick :: IORef State -> String -> ToggleButton -> State -> Bool -> IO()

Because this function has several cases, we will treat them one by one.

handleClick _ _ _ (State _ _ (-1)) _ = return ()

handleClick _ _ _ (State Nothing (Just (True,p1,p2)) 0) _ =

do

showImageOnButton p1 "found.jpg"

showImageOnButton p2 "found.jpg"

handleClick _ "found" _ _ _ = return ()

In handleClick, we distinguish several cases, handled separately by using pattern
matching on the arguments of the function. The first case, where the total number of
cards left in the game state is set to -1, is used when the game board should not react to
any clicks. This is necessary when one button toggle results in ’un-toggling’ another but-
ton, otherwise the un-toggling would trigger another execution of handleClick. When
the the number of pairs to match is zero, and the last attempt to match succeeded, the
game is finished. Here, we just make sure that the last pair of images are also replaced
by smiley faces, but other actions can be added (showing a dialog box, adjusting the
message in the control panel, . . .). The third case is executed when a button is toggled
which contains a card that had already matched. Here, no changes must be made to the
game state or the button which was clicked.

handleClick ref name button (State (Just lastButton) _ tot) False =

do

writeIORef ref (State Nothing Nothing tot)

showImageOnButton button "back.jpg"

When a button is clicked, but the user decides to choose another card to start with,
i.e. he clicks the same button again, the state should be set to the state the game
was in before to the first click. Obviously, this case must be handled before the others,
otherwise a match will be found, which is clearly wrong.

handleClick ref name button (State Nothing Nothing tot) _ =

do

writeIORef ref (State (Just button) Nothing tot)

showImageOnButton button name

This case occurs when a button is clicked while the game is in the ’empty’ state. When
this happens, the game is adjusted (it should show which button is currently clicked), and
the image which belongs to the clicked button is shown, using the showImageOnButton

function. This last function is discussed at the end of this section.

handleClick ref name button (State Nothing (Just (False,p1,p2)) tot) _ =

do

writeIORef ref (State (Just button) Nothing tot)

showImageOnButton button name

showImageOnButton p1 "back.jpg"

showImageOnButton p2 "back.jpg"

handleClick ref name button (State Nothing (Just (True,p1,p2)) tot) _ =

do

writeIORef ref (State (Just button) Nothing tot)

showImageOnButton button name

showImageOnButton p1 "found.jpg"

showImageOnButton p2 "found.jpg"

When the last attempt to match two images failed, and a new button was clicked, the
first case will be executed. The game state is adjusted, so the currently clicked button
is in it, and the last attempt to match is removed. The image of the clicked button is
shown, and the images of the last two buttons which were clicked are reset to the default
image.

When the last attempt did succeed, the same actions will be executed, but instead
of resetting the images of the clicked button to the default one, the images are set to a
’found’-image (i.e. a smiley face).

handleClick ref name button (State (Just prevBut) _ tot) True =

do

last <- widgetGetName prevBut

let matched = (name == last)

writeIORef ref (State Nothing Nothing (-1))

toggleButtonSetActive False button

toggleButtonSetActive False prevBut

prevName <- widgetGetName prevBut

showImageOnButton button name

if (matched) then

do widgetSetName button "found"

widgetSetName prevBut "found"

writeIORef ref (State Nothing (Just (matched,button,prevBut))

(tot-1))

if (tot-1 == 0) then

toggleButtonSetActive True button

else return ()

else

writeIORef ref (State Nothing (Just (matched,button,prevBut))

tot)

When some button has already been clicked, and a second is clicked, the definition
of handleClick above is used. Because the toggle of both buttons is set to False, we
have temporarily adjusted the game state, so no clicks will be accepted. The image of
the second button is shown, so the user can see if the match succeeded or failed. Then,
using the names of the buttons, we check if the match succeeded. When it did, the
name of the button is adjusted to ’found’, and the state is adjusted accordingly. When
this matched pair was the last pair (which we can check using the number of pairs left
to match), we force a button click, to make sure the ’found’-image is shown on both
buttons. When the match failed, all we have to do is adjust the game state. Because
the name of the buttons wasn’t changed, the images will be reset to the default image
when the next button is clicked.

To conclude the discussion of the code, we show the function, which is used to show
a certain image on a button.

showImageOnButton :: Button -> String -> IO()

showImageOnButton button file = do

children <- containerGetChildren button

containerRemove button (head children)

image <- imageNewFromFile file

containerAdd button image

widgetShowAll button

Because another image is already added to the button, we will remove it first, anal-
ogous to the way we removed the game board when a new game is started. Using the

string which contains the path of the new image to be shown, we obtain the desired
image, add it to the button, and show the new widgets added to the button using
widgetShowAll.

The code: playing with efficiency

Because the example application we have written is quite small, efficiency isn’t a real
issue. Still, we would like to show how to improve the efficiency of our application.

The problem is that each time a button is pushed, the image the button hides is loaded
from disk. Because our images are small, no real delay can be noticed. To avoid the
images being loaded from disk every time, we could load them once, when the application
is started. Then, when a button is pushed, we only have to replace the current image
with another image already loaded.

Another thing we can improve, is the way how we change an image shown on a button.
In the implementation above, we explicitly remove the current image, and add a new
image to the button. A better way would be to change the image, rather than replacing
it.

To kill two birds with one stone, we use the Pixbuf datatype, which contains all the
information needed to create an image.

Loading all the images before they are needed, requires a way to make the loaded
images accessible when needed. One way is to use a map, which is built at the beginning
of the program:

type Images = [(String, Pixbuf)]

Now, when we need to ’load’ an image, we can use the lookup function, which is
defined in the Haskell Prelude.

Because we are using Pixbuf, there is no need to replace the image on a button, we
can just change it. To illustrate, we show how the showImageOnButton function could
look like:

showImageOnButton :: ToggleButton -> Images -> String -> IO ()

showImageOnButton button images imageName = do

let Just image = lookup imageName images

imageWidget <- liftM castToImage $ binGetChild button

imageSetFromPixbuf imageWidget image

This implementation is both simpler and cheaper in terms of resources. Credits go to
Duncan Coutts for this suggestion.

The game: really playing it

As you may have noticed when trying to play the game, it is quite easy to play, too
easy really. The reason is simple: the list containing the image-names, and thus the

list which determines the sequence of the cards on the board, is never shuffled. In
order to implement the game as it is meant to be played, we should provide a shuffle

function, which simply shuffles the list containing the image-names. We didn’t bother to
implement such a function, because it has nothing to do with the Gtk2Hs functionality.

Conclusion

Gtk2Hs is a powerful, user-friendly Haskell GUI library. The use of Glade to create a
GUI allows the developer of the application to concentrate on the interaction part of
the application, instead of making sure it looks good (just try to create the same layout
as in the memory game, using only Haskell code, you’ll see what I mean). The only
drawback when using Glade, is that the *.glade file should always be available, which
makes distribution of the application more difficult.

The current API available is very useful already, and since Gtk2Hs hasn’t reached 1.0
yet, it will only improve. This article could serve as a Gtk2Hs tutorial for people who
are not familiar with Gtk2Hs, and hopefully is a stimulation for other people working
with Gtk2Hs to write a tutorial of their own. This way, the support for Gtk2Hs will
increase, which will stimulate the growth of the library.

As a disclaimer, I would like to state the code isn’t meant to be the most efficient code
possible, neither to be bug free. Improvements, suggestions and comments are always
welcome, and the code is free to use in any way.

I hope this article has convinced the reader of the benefits of using Gtk2Hs as a Haskell
GUI library, and has contributed to its popularity. Special thanks to Shae Matijs Erisson
(the editor), Duncan Coutts (one of the Gtk2Hs people who made some suggestions) and
Andy Georges (who proofread this article, and suggested a lot of improvements, mostly
language related).

Implementing Web-Services with the
HAIFA Framework
By Simon D. Foster – email: u1sf@dcs.shef.ac.uk

Distributed Computing is no longer a luxury within the sphere of Computer Science, but
rather a necessity. Languages which are not able to interoperate with their peers are
unlikely to ever achieve any great role in the future. The purely-functional programming
language Haskell encapsulates a large and unique feature set, which would seem have
many applications in this new world of Web-Services. Indeed, the HAIFA project itself
was motivated by the need for a more suitable paradigm on which to base the compo-
sition of Web-Services to fulfill specific tasks. In this article we look at Web-Service
interoperability, and how the HAIFA framework can be used to build Haskell-driven
services, filling a void to which the existing non-functional languages have no elegant
and composable solutions.

Introduction to HAIFA

The Haskell Application Interoperation Framework (HAIFA) project is the culmination
of the last 18 months work in attempting to enhance the interoperability capabilities of
Haskell by introducing a framework for developing and accessing Web-Services. The
project has gone through a large number of evolutions as the design was continually
refactored to work around various design issues in the original project specification.
However, we are now finally reaching the stages where HAIFA can be used to build
services from vanilla Haskell code requiring minimum rewriting, with the ultimate goal
of allowing a completely decoupled interface to be attached to packages for distribution
of Haskell functionality.

The primary motivation behind HAIFA has been the need for a more well suited
paradigm for developing Web-Services than the current technologies can provide. Our
goal with HAIFA is to build an elegant and clean Web-Service API, taking advantage
of Haskell’s unique characteristics to enable users to solve instances of a particular
problem domain with minimum difficulty. We believe that Haskell provides an ideal
platform on which safe, reliable, yet concise and highly composable applications can
be built. Composability is becoming an increasingly important factor, as Web-Services
are no longer discrete application parts consumed by monolithic application code, but
are increasingly subject to direct composition, with minimal ‘glue code’, and defined

31

hierarchically by smaller-grain compositions.
However, before we can look at these issues, it is necessary to look at building the

tools for achieving basic interoperability. We first examine the components which have
so far been developed for HAIFA, with an overview of how they work and what they can
be used for. Then, we shall look to how HAIFA can be used to bind Haskell functions
to SOAP [1] operations in order to produce a full Web-Service. Finally we look at the
future of the framework, how we intend to use it in future projects and draw some
conclusions.

Components of HAIFA

The Generic XML Serializer

XML and Haskell

The first, and perhaps greatest challenge of the HAIFA project has been devising a
method for converting Haskell data into the primary data serialization language, XML.
At the beginning of the project, 2 years ago, such tools in Haskell were sparse and largely
incomplete, providing only the very basic features for parsing and producing XML. Due
to its then larger feature set, we chose the Haskell XML Toolbox (HXT) [2] as the
basis library for our project, largely because HaXML [3] did not, at that time, provide
XML Namespaces [4], nor did there appear to be any movement to add such features
(although of course things are different now). However, even HXT on its own is purely
a parser library, with a large set of filters and tools for processing DTDs. Due to time
constraints, we first simply developed an ad-hoc parser for SOAP Envelopes, which was
used to aid in communication with SOAP services. However, this method was, once
more time became available, abandoned in favour of a more generic approach.

The Generic XML Serializer (or simply GXS) is the corner-stone of HAIFA, in that
it provides a method of making the use of XML virtually transparent to the user. The
premise is that users are only bothered about the data at each end of the link, and not
at what happens in between, thus GXS allow the serialization of Haskell algebraic data-
types with, where possible, minimal intervention by the user. Of course, if a particular
application has particular serialization requirements, GXS also provides for this with a
completely customizable interface.

GXS has been developed using the latest version of Ralf Lämmels famous ‘Scrap Your
Boilerplate’ [5][6] Generics library (which we simply refer to as SYB), which builds on
his type-case methodology with the integration of type-class based cases (see [7]). This is
of course precisely the right paradigm in which XML should be serialized, with a general
case for serializing most algebraic data-types, and possible specialization for other data-
types. We also make use of Template Haskell [8] (or TH) for building derivers for our
own GXS classes in order to take the maximum amount of work off the user.

Further, GXS is highly modular and extensible, with the aim of allowing serialization
rules to be distributed over a large number of modules, such that they can be used
together to form complex serializers for different tasks. That said, GXS is still very

much in its infancy, the latest version having only been developed in recent months, and
much of the deserializer part is currently very naive. However it currently suites our
foremost purpose, the implementation of SOAP/1.1 for Web-Services.

Using GXS

As with all SYB-based solutions, GXS is based around the Data class, which now has
two parameters to allow for context customization via John Hughes’ method [9]. We use
Data’s reification properties to enable the extraction of type meta-data in an attempt
to automatically build type serializers. For example a data-type with field labels will
be serialized to a sequence of elements using the names of the fields (the algorithm for
doing this will eventually be customizable).

The class which we ’pass’ as context to the Data class is our own class, XMLData as
shown below (for the purposes of this article, we only provide a brief overview)

class (Data (DictXMLData h) a) => XMLData h a where

-- Custom encoder

xmlEncode :: DynamicMap -> h -> a -> [[XmlFilter]]

-- Monadic Decoder

xmlDecode :: h -> ReadX a

-- Type meta-data

toXMLConstr :: h -> a -> XMLConstr

With DictXMLData being our dictionary for this class. The two parameters of the
class, a and h, indicate the type being serialized, and the ’hook’ which is being applied
to the serialization respectively (we’ll consider hooks later). The operations of the two
main functions, xmlEncode and xmlDecode should be relatively obvious, but the third
function needs further explanation. The XMLConstr data-type contains a number of
properties related to serialization of the given type, such as the ’default’ name to be
assigned to it and how the sub-terms should be serialized (if relevant). The current
structure of the XMLConstr data-type is shown below1

data XMLConstr = XMLConstr { xmlFields :: [FieldProp]

, isInterleaved :: Bool

, isMulti :: Bool

, elementNames :: [String]

, attributeNames :: [String]

, forceDefault :: Bool

, defaultProp :: Maybe FieldProp

} deriving Show

Currently this data-type stores;

1Please note that this data-type is currently in a state of flux, and is highly subject to change as the
design is refined.

I A list of field descriptors for the sub-terms of the type, specifying how the term
should be serialized. For example, whether it should be an element or an attribute
(specified by the FieldProp data-type).

I Flags for whether the data-type is interleaved (unordered) and whether it usually
has multiple particles, as is the case for data-types like [a] and Array.

I Default element and attribute names.
I A flag indicating if the default serialization method is forced, so for example it will

always be given the same name, no matter what its parent type defines.
I The default serialization method.

The XMLConstr should, in most instances, provide all the information required to
serialize a type. The default definitions of the core functions in XMLData use this data-
type extensively to serialize a type, which equates to our most general-case. This is a
feature which the previous version of SYB could not easily provide, since all serialization
data had to come from the reified type meta-data, or via cumbersome type-indexed tables
which had to be passed to the various functions.

Both the deserialization and serialization functions carry around a DynamicMap data-
type, which is essentially a FiniteMap whose value type is Dynamic. However, to en-
able type homogeneity over the domain each key holds a default value, which must be
monomorphically typed, such that the integrity of the data can be maintained. The
DynamicMap is available for essentially any purpose, and is especially useful for allowing
hooks to store and access variables.

This class therefore provides us with most of the features we require to perform se-
rialization. On the one hand, with the aid of the Data class and our default methods,
a powerful general-case serializer is available, and on the other hand the encoder and
decoder functions can be specialized to enable fully customized encoders should the user
require them. However, we don’t yet deal with the middle ground; suppose we don’t
want to fully write our serializers, but we do want to alter our XMLConstr for a particular
type without writing a whole class instance. This is where Template Haskell comes in
handy. In the most specific case, a simple splice can be built which generates a list of
‘instance XMLData h MyDataType’ declarations, to make the code concise. Building
on that, we can put together a number of filters which alter the parameters stored in
XMLConstr, in order to change the default serialization rules with minimal difficulty. For
example, the most basic TH function, xmlify, works like so

$(xmlify [’’MyDataType1, ’’MyDataType2, ’’MyDataType3] [])

which makes the three given data-types serializable by deriving Typeable, Data and
XMLData. We can further supply flags to this function which allow us change the rules
for how to serialize these data-types. For example, the standard rule for element names
is simply to assign a type’s element names corresponding to the names of the type’s
constructors, which naturally begin with uppercase letters. The actual name we require
may begin with a lower-case letter, so with the aid of the flag decapE, this change can
be effected;

$(xmlify [’’MyDataType1, ’’MyDataType2, ’’MyDataType3] [decapE])

This may seem a trivial example, but it displays the relative ease with which serial-
ization rules can be customized.

Hooks

So far, only the actual encoding of data has been discussed, but beyond this GXS
provides a powerful system for encoding meta-data into the serialization tree. Such
hooks can be used to encode XML Schema [10] type data into the tree, which is a vital
feature of SOAP, in particular, and Web-Service interoperability in general. A hook is
essentially a function which can, at every node in the tree, perform some transformation,
such as adding an extra attribute. Currently hooks are only relevant on the encoder side,
in that they only allow the production of meta-data and not the interpretation. For the
most part this is not a problem, since deserialization can be performed without meta-
data, but certainly this is an area for future expansion in order to allow for proper data
validation.

Each hook consists of a type-code2, with instances for the two type-classes; XMLHook,
which actually encodes the meta-data into the tree and InitXMLHook which prepares
the DynamicMap with any required data.

-- Add data to the global DynamicMap

class InitXMLHook a where

hookDM :: a -> (DynamicMap -> DynamicMap)

{- XMLHook creates a filter for the XML Tree based on

type-code and the type of the data being serialized.

-}

class InitXMLHook a => XMLHook a b where

encodeHook :: DynamicMap -> a -> b -> [[XmlFilter]]

As an example, a simple encoder for adding Haskell type data to encoders might look
like this;

data XSITypeHook = XSITypeHook

instance Typeable a => XMLHook XSITypeHook a where

encodeHook dm _ x = let ty = show $ typeOf x in

[[attr "type" $ txt ty]]

instance InitXMLHook XSITypeHook where

hookDM _ = id -- Don’t need any extra data

2A type whose internal structure is irrelevant, since we only use the type to point to class instances.

Summary

GXS is finally reaching the state which we always envisaged; a fully extensible XML
Serializer capable of fully customising the serialization process. With the aid of SYB3,
type-classes can be utilized to fully customize encoders and decoders as required, and
hooks aid in encoding arbitrary meta-data into the serialization tree. However, much of
this library is still very young and untested, and due to more pressing projects, we have
concentrated on the parts of the library needed for SOAP. Nevertheless, it should be
possible to adapt it to most applications without difficulty.

SOAP/1.1

SOAP/1.1 is a popular, if somewhat deprecated, protocol for the exchange of messages
between link-partners, primarily as an aid in interoperability. One of the most common
uses of SOAP is to perform remote-procedure invocations over the Internet. The client
sends a request message, encapsulating an operation name and some parameters, and the
server answers with a reply message of the same form, encapsulating the return values.

The availability of an XML Serializer makes the implementation of the basic SOAP/1.1
Envelope structure a breeze. Due to Haskell’s parametric types, a very elegant syntax
for SOAP has been adapted, currently the Envelope structure looks like this;

data Envelope a =

Envelope{ header :: [XmlTree]

, body :: Body a

, encodingStyle :: Maybe String

} deriving (Eq, Show)

Which perfectly captures the concept of an envelope encapsulating a message. With
the help of GXS, we provide encoders for this, as well as appropriate namespaces. For
the purposes of this project, we have adapted the hierarchical library structure in order
to adopt similar naming to the Java-style namespaces, making the location of URI-
qualified data-types easier to derive. So for example, the SOAP Envelope module is
qualified as Org.Xmlsoap.Schemas.Soap.Envelope. So far, only a basic structure for
the SOAP Envelope is available, without some of the more detailed features such as
Arrays, but these should be relatively trivial to implement with GXS.

Web-Service Publisher

The ability to encode and decode SOAP Envelopes is only half the story. Once data-
types can be encapsulated and serialized, it is necessary to be able to wrap up Haskell
functions as SOAP Invocations. Since we are primarily dealing with functions of the form
InputMessage -> OutputMessage where both the input and output messages are GXS
serializable, the process of wrapping the messages up in SOAP Envelopes is trivial. The
next thing to do is to wrap up the function as a HTTP [11] handler. We utilize Warrick
Gray’s HTTP/1.1 library [12] along with code from HWS-WP [13][14], to build a HTTP

server shell, which simply takes a series of handlers, which are in reality just functions
of the type MonadIO m => Request -> m Response, with a few extra parameters for
dealing with the configuration. It then uses these handlers to build a HTTP server,
which we utilize here for serving out SOAP.

The HAIFA Web-Service Publisher then takes vanilla functions of various types and
converts them into HTTP handlers which can then be inserted into the server. The
publisher is based around the Publish type-class;

class Service s m where

publish :: s m -> (XmlTree -> m XmlTrees)

consisting of a single function, which takes a type encapsulating some sort of func-
tionality and parameterised over the monad which the web server is working in (i.e.
any MonadIO monad). This is necessary for monadic operations depending on state,
although, of course, not all types need to actually use the monad. As an example, the
type for encapsulating the simplest type of function, one from an input message to an
output message is;

data MonadIO m => SimpleFunc a b m =

SimpleFunc { sfunc :: (a -> b) }

The instance of Service for this data-type simply deserializes the incoming Envelope,
applies the encapsulated message to the simple function and serializes the output, after
wrapping it in another Envelope. The now homogenous function of type XmlTree ->

m XmlTrees can easily be converted to a HTTP handler and bound to a URI on the
server. Finally we wrap up our functions in an existentially quantified type, to enable
different types of functions to be inserted as operations, and produce a list of pairs,
linking operation names to actual Request -> m Response functions.

Putting it all together

In this section we draw all the tools together and show how a Web-Service can be
implemented in Haskell with the HAIFA framework. We also demonstrate a simple
example which can be used as a template for putting together more complicated services.
The basic process of converting a bunch of functions in a module into a Web-Service is
as follows.

1. The module must have the following pragmas
I -fglasgow-exts
I -fallow-undecidable-instances
I -fallow-overlapping-instances (if the default, easy to use rules are re-

quired)
I -fth (if using TH instance derivers).

2. Import Text.XML.Serializer, Network.Service and Network.Server.HTTP (as-
suming of course HAIFA is installed).

3. All the data-types involved in the function should be made serializable, either by
creating XMLData instances or by using the TH functions, for example $(xmlify

...).
4. Message data-types should be created for the functions; two for each, for input and

output. These should carry the parameters of the functions, and will, for much
of the time, have field labels, to make deriving serializers easier. The name of the
constructors should reflect the names of the messages.

5. Either create instances of Service for the function types, which perform the wrap-
ping up as XML or wrap the functions up in functions of the form InputMessage

-> OutputMessage.
6. Pair each function with an appropriate name, and wrap them all up in a list, with

the help of the existentially quantified PubFunc type.
7. Pass the list of qualified functions to the buildWS function, which will produce a

single HTTP handler.
8. Create a main function, which runs the HTTP server and binds the handler just

created to a URI on the server.
9. Compile, run the server (making sure an appropriate config file exists) and the

Web-Server is ready for action!

Appendix demonstrates how a sample Factorial Web-Service can be constructed. For
simplicity, a function called factorial has been created which takes the input message,
which encapsulates an Int, and returns the output message which encapsulates another
Int. Both InputMessage and OutputMessage are then made serializable with xmlifyQ,
a variant of xmlify which also namespace qualifies the data-type. The function decapE

decapitalises the first character of the message names, given by the constructor names.
This function is then wrapped up as described above, passed to the buildWS function
and finally to the HTTP server itself in the factorialService function. This then
gives us a simple Web-Service with a simple function which can be invoked remotely via
SOAP.

Future Components

XML Schema

The ability to be able to correctly type XML literals is an essential part of programming
XML based applications. The next large project in HAIFA will be the development
of an XML Schema type-mapper, although the first task will be to produce a set of
suitable of data-types for parsing a schema. We have had some success in parsing
XML Schema, specifically with the older version of GXS (pre-SYB3). We were able
to parse the complete XML Schema syntax, and built a very basic type-mapper for it.
The conversion of Haskell data-types to XML Schema will actually not be particularly
complicated, since most of the data can be gleaned from the XMLData class in GXS.
However, mapping schema data-types to Haskell will be a much greater challenge.

WSDL

Once XML Schema is developed, or at least partially developed, the next stage will be
to put together a WSDL [15] processor, which can produce a description of a Haskell
Web-Service, and create accessors for existing Web-Services. To be able to describe the
interface of a Haskell-driven Web-Service is of paramount importance, since without
such a description it is very difficult for other programs to communicate with it. As
with XML Schema though, actually generating WSDL will not be too hard, since we
can set the limits on how we encode our types and operations.

Composite Web-services

As stated the primary motivation behind HAIFA was not merely the implementation
of Web-Services in Haskell, since arguably there already exist adequate solutions in
other languages for doing this. To be able to realise solutions to realistic problems,
it is unusual that a single Web-Service can provide all the required facilities. In fact
with different vendors providing different services, such as Banks, Travel Companies
and General Stores, it is important to consider how a number of Web-Services can be
combined to form solutions to more demanding questions. Functional programming is
naturally very well suited to solving composition problems, and we believe that Haskell
could play a very large role in providing the semantics for workflow-based orchestrations.
At the time of writing the CASheW-s project [16] at the University of Sheffield is
beginning to fully realise a workflow engine, which will, when completed, be capable of
orchestrating composite Web-Services.

Conclusion

We have looked at the work on the HAIFA framework so far in the areas of XML, SOAP
and Web-Services and demonstrated a clear need for the implementation of such tech-
nologies in Haskell. Further, we demonstrate a much larger, and still somewhat open
problem of compositionality in Web-Services, which we think clearly demonstrates that
the current movement in the world of distributed computing and component technology
neccesitate the use of the functional programming paradigm. All of the library compo-
nents are still very immature, and do not yet provide all the features required for the
more advanced XML technologies, in particular XML Schema. We also acknowledge
that there are still many shortcomings in GXS, particularly in deserialization. Never-
theless, we believe the HAIFA framework encapsulates a significant step forward in the
use of Haskell for building industrial strength interoperability applications.

The HAIFA project page on Savannah can be found at
http://savannah.nongnu.org/projects/haifa

Darcs repositories for HAIFA and its dependencies can be found at

http://www.dcs.shef.ac.uk/~u1sf/darcs3

HAIFA code available under the terms of the GNU General Public License

Acknowledgments

We would like to thank Matt Fairtlough, Barry Norton and Andrew Hughes, for their
suggestions and support in this work. We would also like to especially thank Ralf
Lämmel, for putting together the latest and greatest version of SYB, without which this
project would not have been possible. A large section of this work was conducted as
part of a third-year dissertation at the University of Sheffield.

References

[1] Martin Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object access protocol
(SOAP) 1.1. http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ (2000).

[2] Uwe Schmidt. The Haskell XML Toolbox Website. http://www.fh-
wedel.de/˜si/HXmlToolbox.

[3] Malcolm Wallace and Graham Klyne. HaXml: Haskell and XML.
http://www.cs.york.ac.uk/fp/HaXml/.

[4] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML.
http://www.w3.org/TR/REC-xml-names/ (1999).

[5] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. ACM SIGPLAN Notices, 38(3):pages 26–37 (mar 2003). Proc.
of the ACM SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI 2003).

[6] Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips, and
generalised casts. In Proceedings; International Conference on Functional Programming
(ICFP 2004). ACM Press (sep 2004). 12 pages; To appear.

[7] Ralf Lämmel. Modular generic function customisation.
http://homepages.cwi.nl/ ralf/syb3/ (2004).

[8] Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell. In Manuel
M. T. Chakravarty (editor), ACM SIGPLAN Haskell Workshop 02, pages 1–16. ACM
Press (October 2002).

[9] John Hughes. Restricted Data-types in Haskell (1999).

[10] W3C XML Schema. http://www.w3.org/XML/Schema.

3The version of SYB3 found in these repositories should neither be considered official nor final, and is
only provided as a convenience.

[11] R. Fielding, UC Irvine, and J. Gettys. Hypertext Transfer Protocol – HTTP/1.1. Technical
report (1999).

[12] Warrick Gray and Bjorn Bringert. Haskell HTTP Library.
http://www.dtek.chalmers.se/ d00bring/haskell-xml-rpc/http.html.

[13] Simon Marlow. Writing high-performance server applications in haskell, case study: A
haskell web server. In Haskell Workshop. Montreal, Canada (September 2000).

[14] Martin SjÃ¶gren. Dynamic loading and web servers in haskell (October 2000).

[15] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
Service Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl (2001).

[16] CASheW-s Engine Project. http://savannah.nongnu.org/projects/CASheW-s-engine.

Listing of Factorial Web-Service

{-# OPTIONS -fglasgow-exts -fallow-undecidable-instances

-fallow-overlapping-instances -fth #-}

-- A Sample Factorial Service.

module Network.Service.Factorial where

import Text.XML.Serializer

import Network.Service

import Network.Server.HTTP

import Network.HTTP

import Network.URI

import Data.Generics2

import Text.XML.HXT.Aliases

import Text.XML.HXT.Parser

import Org.Xmlsoap.Schemas.Soap.Envelope

-- The Input Message

data IntMessage = IntMessage {value::Int} deriving Show

-- The Output Message

data FactMessage = FactMessage {fact::Int}

-- The Factorial Function

factorial :: IntMessage -> FactMessage

factorial (IntMessage i) = FactMessage (f i)

where f 0 = 1

f 1 = 1

f n = n * f (n-1)

-- Make Input and Output message serializable

$(xmlifyQ [’’IntMessage, ’’FactMessage]

[decapE] "urn:FactorialService")

factorialService = ("factorialService",

\x -> \y -> buildWS [("intMessage",

PubFunc $ SimpleFunc factorial)])

-- Run the HTTP Server

runFactorial :: IO ()

runFactorial = httpServer "config.xml" [factorialService] []

Code Probe - Issue one: Haskell
XML-RPC, v.2004-06-17 [1]
By Sven Moritz Hallberg – email: pesco@gmx.de

Greetings, Recipient! Welcome to Code Probe, The Monad.Reader’s code critique
column. My name is Sven Moritz, also known as Pesco on the IRC, and I hope to
regularly use this column to review some interesting Haskell programs from a literary
perspective.

Being a believer in Knuth’s famous saying that

programs are meant to be read by humans and only incidentally for computers
to execute

I think that there should be a culture of programming criticism, much like there is a
culture of literary criticism. This column is my contribution to such a culture.

I owe inspiration to a talk by Bogk et al. [2] who held a public code critique session
and, in essence, suggested:

Read some code from time to time. It’s fun. And you never know what it
turns up. . .

Nota bene, among other things they displayed, to their audience of several hundred pro-
grammers, a rather blatant buffer overflow condition in the source code of a certain very
popular database system. Funny feeling. . .

XML-RPC

Everyone has probably at least heard about XML-RPC [3]. Used on the WWW for
remote-controlling web services such as Google, it is a simple XML format for encoding
a remote procedure call (and the reply). In fact, it is extremely simple. A procedure
call consists of a method name (a character string) and some number of arguments. The
result is a single value. For the argument and result values, there are six primitive data
types (int, boolean, etc.) and two kinds of complex data types (array and struct).
Without going into detail, the “arrays” are actually heterogenous lists, and a struct is
a kind of associative list, mapping field names (strings) to field values.

43

Haskell XML-RPC

Björn Bringert has written a pretty complete implementation, for both making as well
as accepting XML-RPC calls. The interface is very easy to use, there is virtually no
boilerplate code needed for simple cases. The provided CGI servant also supports the
de-facto standard introspection methods automatically.

Literate Programming, almost

When I first glanced into Haskell XML-RPC as a candidate for Code Probe one, I
thought it was a literate program that just did not make a big deal about being one. I
was looking at the “report” [4] which I would describe as the library’s user manual. It
includes, in pretty LATEX typesetting, complete definitions of Haskell functions and data
types used by the library.

Looking closer though, the report only quotes these from the actual source code. It
does so almost completely and almost accurately. The single inaccuracy is that the
report only mentions the old, non-hierarchical module names which means that a user
reading the report only (for its good explanations) will be surprised to find his program
incorrect with the current release. As for incompletness, there are one or two recent
developments in the code which are not (yet) mentioned in the report. Apart from that,
it explains very well how the library works and how to use it. It is also not overly
verbose. Good!

Short Reference

In addition to the report, a Haddock[5]-generated API reference is available on the Web
which, by the way, does mention the up-to-date module names. It is complete although
a bit short on details.

The latter, in my experience, seems to be a common effect especially with auto-
generated reference documentation. A reference should provide an already-experienced
user with full details on the subject. I suspect that programmers hesitate to “clutter”
their program source with these details (just look at some man-pages to see how much
there can be to say).

For concrete example, the Haddock entry for the type XmlRpcMethod is “The type of
XML-RPC methods on the server”which tells me next to nothing. Looking at the defini-
tion I can partly guess at its purpose but only discovering its usage in cgiXmlRpcServer

really made it clear to me.
Any way, the reference documentation only really neglects very few entries, all impor-

tant functions have documentation, and it is sufficient. Generally, not bad at all.
One omission that surprised me, though, was the missing documentation for the classes

Remote and XmlRpcFun. They are used to implement the polyvariadic functions remote
and fun. The trick used by Bringert here was to my knowledge first mentioned by Oleg
Kiselyov on the Haskell mailing list [6]. It is not trivial to grasp at first (basically, a

polyvariadic functions is a method of a classes with a recursive instance declaration) so
documentation would be helpful. The report does contain a short explanation of the
technique so my guess is that Haddock just runs into a loop on the recursive instances.
Pity.

Low-Level Structs

Although the basic interface of the library is very straight-forward and clean, there are
some minor limitations. Most notably structs require low-level handling unless all their
fields are of the same type – they are mapped to the Haskell type [(String,a)].

Since recently, there is a Template Haskell module (called THDeriveXmlRpcType) to
generically map structs to appropriate Haskell records. It is neither mentioned in the
on-line API reference, nor in the report but the code does contain Haddock comments
and should be readable to those familiar with TH.

Meat of the Matter

Having read all that documentation, is the code itself readable? Yes it is. While it does
not seem to be written with specifically literate ambitions, it is well-structured and easy
to understand.

One could complain about one or two seemingly superfluous definitions (post_ and
doCall) or suboptimal function names (handleResponse), but those are hardly distract-
ing.

More importantly, the internal comments quote the XML specification in several
places, making nicely clear what the code is supposed to do. Also, identifiers are gener-
ally readable and meaningful, and last but not least, all functions are no longer than a
couple of lines.

Also worth noting is the fact that the library relies on external packages for dealing
with XML and HTTP. Thus, there is no extraneous clutter or interweaving of the RPC
facility with the encoding and transport code.

Conclusion

In summary, the Haskell XML-RPC library, apart from bringing some very useful func-
tionality to Haskell, was a pleasant read which might even teach some readers a new
trick – polyvariadic functions. In addition, even though the user manual is very slightly
outdated and the API reference could use some more detail, the provided documentation
classifies as “very good”.

Probe Rating: Quite Enjoyable

References

[1] Björn Bringert. Haskell xml-rpc (June 2004). http://www.dtek.chalmers.se/
~d00bring/haskell-xml-rpc/.

[2] Andreas Bogk et al. Das literarische code-quartett (December 2004). http://www.ccc.
de/congress/2004/fahrplan/event/97.en.html.

[3] D. Winer. Xml-rpc specification (June 1999). http://www.xmlrpc.com/spec/.

[4] Björn Bringert. Haskell xml-rpc “report” (January 2004). http://www.dtek.chalmers.
se/~d00bring/haskell-xml-rpc/haskell-xml-rpc.pdf.

[5] Simon Marlow. Haddock: A haskell documentation tool. http://haskell.org/haddock/.

[6] Oleg Kiselyov. Functions with the variable number of (variously typed) arguments (June
2004). http://okmij.org/ftp/Haskell/vararg-fn.lhs.

http://www.dtek.chalmers.se/~d00bring/haskell-xml-rpc/
http://www.dtek.chalmers.se/~d00bring/haskell-xml-rpc/
http://www.ccc.de/congress/2004/fahrplan/event/97.en.html
http://www.ccc.de/congress/2004/fahrplan/event/97.en.html
http://www.xmlrpc.com/spec/
http://www.dtek.chalmers.se/~d00bring/haskell-xml-rpc/haskell-xml-rpc.pdf
http://www.dtek.chalmers.se/~d00bring/haskell-xml-rpc/haskell-xml-rpc.pdf
http://haskell.org/haddock/
http://okmij.org/ftp/Haskell/vararg-fn.lhs

	Pseudocode: Natural Style
	Programming and Writing
	Refactor aggressively
	Natural transformations

	Programming Challenge

	Pugs Apocryphon 1 -- Overview of the Pugs project
	What is this document about?
	What is Perl 6?
	Has Perl 6 been specified?
	What does "Apocrypha" mean?
	What is the relationship between Apocrypha and the Perl 6 design documents?
	Will Pugs implement the full Perl 6 specification?
	Is Pugs free software?
	Is Pugs funded by the Perl Foundation?
	Where can I download Pugs?
	How do I build Pugs?
	What is Haskell?
	What is GHC?
	What is the Perl 6 bootstrapping problem?
	What was the initial bootstrapping plan?
	What was the revised bootstrapping plan?
	How can Pugs help Perl 6 to bootstrap?
	How can Pugs help the Perl 6 language design?
	Why did you choose Haskell?
	Is Pugs a compiler or an interpreter?
	Which compiler backends do you have in mind?
	Do you have a roadmap for Pugs development?
	How portable is Pugs?
	How fast is Pugs?
	Is there a CPAN for Perl 6 modules?
	Can Pugs work with Perl 5 libraries?
	Can Pugs work with Haskell libraries?
	Can Pugs work with C libraries?
	I know Perl 5, but not Haskell. Can I develop Pugs?
	I know Haskell, but not Perl 5. Can I develop Pugs?
	I have learned some Perl 6. What can I do with Pugs?
	Where can I learn more about Haskell?
	Where can I learn more about Perl 6?
	Where can I learn more about implementing programming languages?
	I'd like to help. What should I do?

	An Introduction to Gtk2Hs, a Haskell GUI Library
	Introduction
	What is Gtk2Hs?
	The example program: Memory, the game
	The GUI: Using Glade
	The code: reading the glade description
	The code: what's after Glade
	The code: setting up communication
	The code: playing the game
	The code: playing with efficiency
	The game: really playing it
	Conclusion

	Implementing Web-Services with the HAIFA Framework
	Introduction to HAIFA
	Components of HAIFA
	The Generic XML Serializer
	Hooks
	SOAP/1.1
	Web-Service Publisher

	Putting it all together
	Future Components
	XML Schema
	WSDL
	Composite Web-services

	Conclusion
	References
	Listing of Factorial Web-Service

	Code Probe - Issue one: Haskell XML-RPC, v.2004-06-17 cp1:haskell-xml-rpc
	XML-RPC
	Haskell XML-RPC
	Literate Programming, almost
	Short Reference
	Low-Level Structs
	Meat of the Matter
	Conclusion
	References

