Adaptable Tokenizer for Programming Languages

Lect. Drd. Dan Popa
Univ. Bacau, Spiru Haret Nr 8, Bacau 5500, Romania
mail to: popavdan@yahoo.com cc: vpopa@ub.ro

Abstract: New extensions of the programming languages are frequently
created. But implementing such extensions usually becomes an
expensive and difficult task. Sometimes compilers and interpreters are
generated based on sets of specifications. But the creation of such sets
and/or the task of building a CWL (compiler writing language) is still
difficult. It will be extremely easy for the language developer if the
compiler or at least a part of it will be able to dynamically adapt itself to
the needs of the new language without any modifications inside the
program. This new concept of adaptable language (i.e. without
metalanguage specifications written by human hand) is introduced here,
based on the research of Dan Popa. Such a software component will be
entirely reusable, dramatically reducing the cost of the project to which it
belongs. Applications will be from language development to Internet
browsing tools building, and more. The goal of the paper is to announce
the apearence of an adaptable tokenizer which is closest to the Al
technology and is performing adaptive analysis.

1. Introduction

Usually, a CWL (compiler writing language) is used to transform a set
of specifications into a part of a compiler. For example, the lexical
analysis is usually made by a set of carefully design finite determinist
automata. The design specifications can be transformed in a final
tokenizer on two ways: by writing the tokenizer by hand or by processing
the set of specifications with a tokenizer generator like Lex or Flex. By
consequence, the tokenizer should be rebuild every time when a new
class of tokens is introduced in the language.

Let's take a look from an other point of view, because the future
computer systems probably will be adaptable (or at least more
adaptive)and will be able to automatically adapt their behavior to your
needs and to your language.

2. The tasks of the tokenizer and the involved problems

The main task of a tokenizer (or lexical analysis tool) is to cut the stream
of characters from the input. It is the most visible, but it is not the heavy
one. The next one is to classify the atoms in groups like: numbers,
identifiers, operators etc ... This is highly important. Tipical tokenizers
are only able to recognize the classes of atoms which have already been
built in the program of the tokenizer itself.

On the opposite side, It will be easy for an adaptable (or
adaptive)tokenizer to learn new patterns of the atoms (words, numbers,
identifiers, operators) which it had never ever seen before. The problem
of recognizing new cathegories of atoms is in fact more difficult that the
reader believes. Let's see the main difficulty:

The problem is how to realize that an other complex word is in fact a
generalization of a previous one ! Remember, the rules are not known !

Let's take some examples:

a) 41 is a number. If an other number, like 1245 will come from the
input stream, how did the tokenizer realize that it belongs to the same
group ?

b) 12.34 is a real number. Will be the tokenizer smart enough to tell
that 456.8775 belongs to the same group ?

c) If a strange kind of atom is coming from the input followed by a
similar and maybe more complex one, how can the tokenizer realize that
this new similar atom belongs to the same class ?

In fact, in our opinion, the difficult task of an adaptable tokenizer, which
is able to learn by itself, is to generalize the informations it has
processed in such a great mode that similarly tokens will be accepted as
being parts of a previous identified class. During the research we had
solved this problem by using a special data structure, which is not a set
of finite automata. It did not used genetic algorithms or neural networks.

Let's see how the adaptable tokenizer is built:

3. Structure of the adaptable tokenizer

The adaptable tokenizer consists of some simple pieces:

- The buffer which stores the string to be processed.

- A classifier routine (GetClassCode) which is able to separate the digits
(0,1,2,3,4,5,6,7,8,9,0), the letters of the alphabet (‘a','v’, 'c' ...'z', 'A", 'B'
...Z") and the remaining symbols (*;' "<", ">"everything). The space is
considered the tokens separator because to say if "JOIANA" (or
"JOEANA") is a pair of tokens (one of them being "ANA") is impossible

without an inserted space in the middle of the sequence.

Remark: In the learning phase of the adaptable tokenizing process, the
space (" ") between tokens should be necessary. But after the system
had learned the classes of tokens, the informations extracted from it's
data structure may be used to generate a classic, non adaptable and
non space dependent tokenizer, if you wish.

- A special data structure (SDS). It acts as a self constructed base of
extensions. This is the third piece.

- The mechanism used for generalization which is based mainly on the
(SDS) properties. It allows the tokenizer to accept a generalization of a
previous token as an element of a known class of tokens. In this case, a
new class of token will not be created.

- The main loop of the Learning procedure is using the ClassCode
Numbers given by GetClassCode routine and stores it in the SDS.
(That's it, we are forced to clasify somehow the symbols of thealphabet
itself, before the process.) When the current token ends, the data inside
the SDS reflects the atom's class.

4. Alghorithm of this adaptable (adaptive) tokenizer

In the first phase the tokenizer is able to learn new kinds of atoms. Every
new kind is getting a new number. The following alghorithm is used:

REPEAT

Store the atom's informations in the SDS.
UNTIL TheAtomlisFinished
IF TheCreatedSignature get us something new.
THEN Inc(ClassNumber)

Display.WriteStr(“A new class of atoms !”)

ELSE RollBack
END

The sequence of informations concerning the new atom is stored in the
SDS. It may or it may not match an old signature.

When the atom ends, the tokenizer is looking for something new in the
signature. If found, then a new kind of atoms have been discovered.

Otherwise the SDS is cleared, by removing the data entered by the
previous loop. Let's remark the fact that such a procedure may basically
double the time of the analysis, in the worst case. This means “when all
the atoms belong to the same type”.

5.Running the adaptable tokenizer

The prototype of the tokenizer build during February 2004 in Bacau,
Romania had only a 80 characters buffer. In order to respect the history
and the language of the author, the output of the computer was recorded
as it was. The English speaker is asked to tolerate some romanian
words in the listing below and to look for the values of the set of classes,
during the sequential processing of the tokens. In fact this is the goal of
the adaptable tokenizer, to process texts which had been written in,
virtually, every language. If a new kind of token is revealed, it's number
is added to the set, as you can see below:

DUmy Precise LEXi cal analizer - DUPLEX

The U timate Adaptable Lexical Analizer v.0.27.11.2004
(c) Copyright by Dan Popa 2004 popavdan@ahoo. com

A week-end project by a non PH D. from Bacau, Romani a
mai | to: popavdan@ahoo. com or vpopa@b.ro

Buffer Cleared ! Enter the text preceded by a space, foll owed by spaces:
> Carnen 1971 a indragit notanul 6.07.2001

Processing atom # 1
Car men Onoua clasa de atom |lexicali !
Setul de clase - Set O dases: { 1,}

Processing atom# 2
1971 Onoua clasa de atom lexicali !
Setul de clase - Set O Cases: { 1, 2,}

Processing atom # 3
a O clasa veche de atom lexicali, nimc nou de facut !
Setul de clase - Set O Cases: { 1, 2,}

Processing atom# 4
i ndr agi t Oclasa veche de atoni lexicali, nimc nou de facut !
Setul de clase - Set O Cases: { 1, 2,}

Processing atom# 5
mot anul Oclasa veche de atom Ilexicali, nimc nou de facut !
Setul de clase - Set O Cases: { 1, 2,}

Processing atom# 6
6. 07. 2001 Onoua clasa de atom lexicali !
Setul de clase - Set O Cases: { 1, 2, 6,}

6. Conclusion

The first step in the new world of the adaptable language processing is
made.This kind of systems are able to adapt themself to your language
as you type, correctly identifying the different classes of tokens without
knowing anything about them before. The adaptable (adaptive)
tokenizer is build since February 2004 and it is proved to be functional.

The complexity of the algorithm is linear, but it is dependent by the
implementation of the SDS.

To build such an adaptable tokenizer was an acceptable task, the
program, written in Oberon being short (less than 300 lines of code,
comments included).

So we don't need to rebuild the tokenizer every time when we are
building a new language or every time when we extends an old one.
The only thing to do is to run an adaptable tokenizer using a text written
in the new language and save the data structure generated by it for the
future analisis. Th compiler's tokenizer will use such informations instead
the specifications of the language's atoms but will reject the new kind of
tokens as errors.

Bibliography

Aaby, A. Anthony Introduction to Programming Languages ,
http://cs.wwc.edu/aabyan/221_2/PLBOOK/ ;
1998-2002

Crenshaw, Jack W. Let’s Build a Compiler (Compiler Building
Tutorial 1.8, April 11, 2001) WWW resource

Denning, J. Peter; Metcalfe, Robert M.
Beyound Calculation, The Next Fifty Years
Of Computing, Copernicus, Springer Verlag,
New York, 1998;

Micusa,D; Todoroi D ; Tsapcov V ; Drucioc N; Chelaru M
Extensibilities’ Cube in Object — Oriented
Programming: Implementation of the Level-
Level-Preprocesor-Compiler, The 9'"
Roumanian Symp. On Computer Science:
ROSYCS’93, lasi, Univ Al. I. Cuza, pg. 265-288.

Parv Bazil, Vancea Alexandru
Fundamentele limbajelor de programare,
Editura Albastra , Cluj Napoca, 1996

Popa, Dan - Rezultate conexe cercetarilor despre
interactiunile dintre compilatoare si
interpretoare, Simpozionul International al

Popa, Dan

Popa, Dan

Serbanati, Luca Dan

Tery, P.D.

Vaida, Dragos

Tinerilor Cercetatori, ASEM, Chisinau 2003,
p.387-388;

Building an extensible language — Internal
code for the Interpreters with two program
counters, Conferinta Internationala - Rolul
stiintei si invatamantului economic in
realizarea reformelor economice din
Republica Moldova, ASEM Chisinau 2003,
p.573-576.

Programarea Calculatoarelor in Limbajul
Oberon, (Note de curs),Universitatea Bacau,
2003-2004

Limbaje de programare si compilatoare ,
Editura Academiei Republicii Socialiste
Romania ; 1987

Compilers an Compilers Generators, an
introduction with C++ , P.D. Terry, Rhodes
University, 1996

Algoritmi de compilare ,
Editura Didactica si Pedagogica, Bucuresti,
1971 ;

Zenger, Matthias; Odersky Martin

Implementing Extensible Compilers

Swiss Federal Institute of Technology,

INR Ecublens, 1015 Lausanne, Switzerland
(WWW ressource)

