
Type inference and optimisation
for an impure world.

Ben Lippmeier

Australian National University

Type inference and optimisation for an impure world. 1

From Wikipedia:

Functional programming is a programming paradigim that treats
computation as the evaluation of mathematical functions and avoids
state and mutable data.

an empty definition?

Type inference and optimisation for an impure world. 2

Mutable state is useful

• Some ”pure functional programs” are based totally around state
and mutable data.

• Some programs need mutable data for efficiency.

• Mutable state is a convenient feature in the programming model.

From GHC:

data TcTyVarDetails

= SkolemTv SkolemInfo

| MetaTv BoxInfo (IORef MetaDetails)

^^^^^

Type inference and optimisation for an impure world. 3

Unsupported features:

The ability to write programs with computational effects and mutable
state is a feature of a language.

- But -

These features create headaches for compiler writers and people
into formal semantics.

• Changing the order of interfering effects can change the
meaning of a program.

• Changing the sharing properties of mutable data can change the
meaning of a program.

Type inference and optimisation for an impure world. 4

Solutions?

• Separate programs into “pure” and “impure”.

• Disparage the impure ones.

• Wrap a state monad around impure code and call it pure.

• Feel satisfied.

Works well on haskell-cafe!

Type inference and optimisation for an impure world. 5

Yay for state monads

• State monads help us thread world tokens through our program
so we can express the data dependencies which are not
otherwise visible to the compiler.

• You can erase the world tokens before native code generation so
the program doesn’t suffer a performance loss.

• The effect that a piece of code has is expressed in its type.

Type inference and optimisation for an impure world. 6

Boo at state monads

• Monadic code does not compose well with non-monadic code.

• You need pure and monadic versions of every higher-order
function.

• Haskell has stratified into “pure” and monadic sublanguages.

fun () fun ’ ()

= let x = f ... = do let x = f ...

y = map g x y <- mapM g’ x

in y return y

map :: (a -> b) -> a -> b

mapM :: Monad m => (a -> m b) -> a -> m b

Type inference and optimisation for an impure world. 7

Another solution?

• Allow the programmer to use arbitrary computational effects.

• Have the compiler infer which data is mutable and which function
applications cause effects.

• Annotate the intermediate language with this information and
use this to guide the optimisations.

Example: map.core.ds

• Compiler can now reason about effects directly.

• Effect information in types is orthogonal to shape/structure
information.

Type inference and optimisation for an impure world. 8

Types, Regions, Effects, Closures ...

map

:: forall t0 t1 %r0 %r1 !e0 $c0

. (t0 -(!e0 $c0)> t1)

-> List %r0 t0 -(!e1 $c1)> List %r1 t1

:- !e1 = !{! Read %r0 ; !e0}

, $c1 = f : $c0

map f Nil = Nil

map f (Cons x xs) = Cons (f x) (map f xs)

Type inference and optimisation for an impure world. 9

... and Classes

updateInt

:: Mutable %r1

=> Int %r1 -> Int %r2 -(!e1 $c1)> ()

:- !e1 = !{ ! Read %r2 ; ! Write %r1 ; }

, $c1 = ${ Int %r1 }

suspend

:: Pure !e1

=> (a -(!e1)> b) -> a -> b;

Type inference and optimisation for an impure world. 10

Play together nicely now, kids.

fun2 ()

= do { list1 = [1..];

list2 = mapL ((*) 2) list1;

...

(head list1) := 5;

...

};

mapL :: (Pure !e1 , Const %r0)

=> (a -(!e1)> b) -> List %r0 a -> List %r1 b

mapL f [] = []

mapL f (x:xs) = suspend1 f x : suspend2 mapL f xs

Type inference and optimisation for an impure world. 11

test/Error/CheckConst/PureReadWrite/Main.ds:15:21

Cannot write to Const region.

This region is being forced Const because there is a

purity constraint on a Read effect which accesses it.

effect: !Write @165

caused by: (:=)

at: Main.ds:15:21

conflicts with,

effect: !Read @165

caused by: (*)

at: Main.ds:14:25

which is being purified by,

constraint: Base.Pure @230

from the use of: mapL

at: Main.ds:14:18

Type inference and optimisation for an impure world. 12

Of course, there are issues with type inference..

printInt

:: forall %r1

. Int %r1 -(!e1)> ()

:- !e1 = !{ ! Read %r1 ; ! Console ; };

fun f = if ... then f else printInt

fun :: forall %r1

. (Int %r1 -(!e1)> ()) -> Int %r1 -(!e1)> ()

:- !e1 = !{ ! Read %r1 ; ! Console ; };

Uh oh. What does the first !e1 in the type for fun mean?

Type inference and optimisation for an impure world. 13

Rewrites

Region/effect/closure variables in a contra-variant branch are always
inputs - ie they do not represent constraints on what that particular
variable can be. We can rewrite to the desired form.
fun :: forall %r1

. (Int %r1 -(!e1)> ()) -> Int %r1 -(!e1)> ()

:- !e1 = !{ ! Read %r1 ; ! Console ; };

rewrites to:
fun :: forall %r1 %r2 !e1

:- (Int %r1 -(!e1)> ()) -> Int %r2 -(!e2)> ()

, !e2 = !{ ! Read %r3 ; ! Console ; !e1}

, %r3 = %{ % r1 ; %r2 }

Type inference and optimisation for an impure world. 14

Bi-directional unification is not the right operation

(==) :: forall a %r1

. Eq a

=> a -> a -(!e1 $c1)> Bool %r1

:- !e1 = ! Read a, $c1 = (x : a);

x1 :: Const %r5 => Int %r5;

x2 :: Mutable %r6 => Int %r6;

y = (x1 == x2)

%r5 and %r6 are being forced to be the same via the type variable a

– but a region can’t be both Const and Mutable at the same time.

Type inference and optimisation for an impure world. 15

Shape Constraints

(==) :: forall a b %r1

. (Eq a, Shape a b)

=> a -> b -(!e1 $c1)> Bool %r1

:- !e1 = !{ ! Read a; ! Read b; }

, $c1 = (x : a)

Shape forces a and b to have the same structure, without placing any
constraint on regions, effects or closures.

This is in the same spirit as the type equality witnesses in Fc – the
constraint is maintained during type inference and in the Core IR but
no dictionary is passed at runtime.

Type inference and optimisation for an impure world. 16

Demos

• n-body

• spinner

• Bresenham

Type inference and optimisation for an impure world. 17

