Type inference and optimisation
for an impure world.

Ben Lippmeier

Australian National University

Type inference and optimisation for an impure world.

From Wikipedia:

Functional programming is a programming paradigim that treats
computation as the evaluation of mathematical functions and avoids
state and mutable data.

an empty definition?

Type inference and optimisation for an impure world.

Mutable state is useful

e Some "pure functional programs” are based totally around state
and mutable data.

e Some programs need mutable data for efficiency.

e Mutable state is a convenient feature in the programming model.

From GHC:

data TcTyVarDetails
= SkolemTv SkolemInfo
| MetaTv BoxInfo (IORef MetaDetails)

PN AN AN A AN

Type inference and optimisation for an impure world.

Unsupported features:

The ability to write programs with computational effects and mutable
state is a feature of a language.

- But -

These features create headaches for compiler writers and people
into formal semantics.

e Changing the order of interfering effects can change the
meaning of a program.

e Changing the sharing properties of mutable data can change the
meaning of a program.

Type inference and optimisation for an impure world.

Solutions?

e Separate programs into “pure” and “impure”.
e Disparage the impure ones.
e Wrap a state monad around impure code and call it pure.

e Feel satisfied.

Works well on haskell-cafe!

Type inference and optimisation for an impure world.

Yay for state monads

e State monads help us thread world tokens through our program
SO we can express the data dependencies which are not
otherwise visible to the compiler.

e You can erase the world tokens before native code generation so
the program doesn’t suffer a performance loss.

e The effect that a piece of code has is expressed in its type.

Type inference and optimisation for an impure world.

Boo at state monads

e Monadic code does not compose well with non-monadic code.

e You need pure and monadic versions of every higher-order
function.

e Haskell has stratified into “pure” and monadic sublanguages.

fun () fun’ ()
= let x = £ ... = do let x = f
y = map g X y <- mapM g’ x
in y return vy
map :: (a -> b) -> a -> b
mapM :: Monad m => (a ->m b) -> a ->m b

Type inference and optimisation for an impure world.

Another solution?

e Allow the programmer to use arbitrary computational effects.

e Have the compiler infer which data is mutable and which function
applications cause effects.

e Annotate the intermediate language with this information and
use this to guide the optimisations.

Example: map.core.ds
e Compiler can now reason about effects directly.

e Effect information in types is orthogonal to shape/structure
information.

Type inference and optimisation for an impure world.

Types, Regions, Effects, Closures ...

map
forall tO0 t1 %rO %rl !'e0 $cO
(t0 -(!'eO0 $cO0)> t1)
-> List %r0 tO0 -(!'el $cl)> List %rl t1
- lel = I{!/Read %r0; !e0}
, $ci = f : $cO
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

Type inference and optimisation for an impure world.

... and Classes

updatelnt
Mutable %rl
=> Int %rl1 -> Int %r2 -(lel $c1)> ()
:- lel = 1{ !'Read %r2; !Write %rl; }
, $c1 = ${ Int %r1 }

suspend
Pure lel

=> (a -('el)> b) -> a -> b;

Type inference and optimisation for an impure world. 10

Play together nicely now, kids.

fun2 ()
= do { listl1 = [1..7;
list?2 = mapL ((*x) 2) listil;
(head 1listl) := 5;
s
mapL :: (Pure !'el, Const %r0)

=> (a -(!'el)> b) -> List %r0 a -> List %rl1 Db

mapL f [] = []

mapL f (x:xs) = suspendl f x : suspend2 mapL f xs

Type inference and optimisation for an impure world. 11

test/Error/CheckConst/PureReadWrite/Main.ds:15:21
Cannot write to Const region.
This region is being forced Const because there is a
purity constraint on a Read effect which accesses it.
effect: !Write @165
caused by: (:=)
at: Main.ds:15:21

conflicts with,
effect: !'Read 0165
caused by: (*)
at: Main.ds:14:25

which is being purified by,
constraint: Base.Pure 0230
from the use of: mapL
at: Main.ds:14:18

Type inference and optimisation for an impure world.

12

Of course, there are issues with type inference..

printliInt
forall Yril
Int %rl -(lel)> ()

:— lel = 1{ 'Read %rl; !'Console; };
fun £ = 1f ... then f else printInt
fun :: forall Yril
(Int %r1 -(le1l)> ()) -> Int %r1 -(C(lel)> (O
:— lel = 1{ 'Read %rl; !'Console; };

Uh oh. What does the first 'e1 in the type for fun mean?

Type inference and optimisation for an impure world. 13

Rewrites

Region/effect/closure variables in a contra-variant branch are always
iInputs - ie they do not represent constraints on what that particular
variable can be. We can rewrite to the desired form.

fun :: forall %ri
(Int %rl1 -(tel)> () -> Int %rl -(lel)> O
:— lel = I{ 'Read %rl1l; !Console; };
rewrites to:
fun :: forall Y%rl %r2 lel
:= (Int %r1 -(Clel)> (O)) -> Int %r2 -('e2)> (O
, le2 = !{ 'Read %r3; !Console; lel}

, hr3 = 4{ %hrl; %r2 }

Type inference and optimisation for an impure world.

14

Bi-directional unification is not the right operation

(==) :: forall a Y%ri1l
Eq a
=> a -> a -(lel $c1)> Bool Yri1
:— lel = 'Read a, $cl1 = (x : a);
x1 :: Const %“r5 => Int %r5;
x2 :: Mutable %r6 => Int %r6;
y = (x1 == x2)

%r5 and %r6 are being forced to be the same via the type variable a
— but a region can’t be both Const and Mutable at the same time.

Type inference and optimisation for an impure world.

15

Shape Constraints

(==) :: forall a b %ril
(Eq a, Shape a b)
=> a -> Db -('el $c1)> Bool ¥%ril
- lel = 1{ IRead a; !'Read b; }
, $c1 = (x : a)

Shape forces a and b to have the same structure, without placing any
constraint on regions, effects or closures.

This is in the same spirit as the type equality witnesses in F. —the
constraint is maintained during type inference and in the Core IR but
no dictionary is passed at runtime.

Type inference and optimisation for an impure world.

16

Demos

e n-body
e spinner

® Bresenham

Type inference and optimisation for an impure world.

17

