Virtualizing Real-World
Objects In FRP

Daniel Winograd-Cort

Department of Computer Science
Yale University

Haskell Implementors’ Workshop
September 23, 2011



The Context:
Functional Reactive Programming

» Programming with continuous values and
streams of events.

 Like drawing signal processing diagrams:

signhal processing diagram equivalent arrow syntax in Haskell

» Previously used in:

- Yampa: robotics, vision, animation
> Nettle: networking

- Euterpea: sound synthesis and audio processing




Understanding arrow syntax

 Let's write a program that integrates a
signal and then doubles it:

signal processing diagram arrow syntax in Haskell

sigfun :: SF Double Double

—_ X .
y <- integral -< x

returnA -< 2 * vy




The 10 bottleneck of FRP

MIDI synthesizer

sound card

s
o

printer

electric piano

‘ ‘ game
controller

\/

]

Run-time System

Main Program
(a signal function)

N
—‘ \/ mouse

>

MIDI instrument

console I/O



Add transparency by moving the
devices into the signal function

electric piano

MIDI s izer

7 \

} game
= N = controller

L

Run-time System

. Main Program ‘

N
(a signal function) ‘ \/ mouse

B

console I/O

sound card

‘ ." """‘ - “ %

V| instrument




An |O-transparent Signal Function

| Main Program .
_ electric piano
: MIDI synthesizer
. “ game

controller

mouse

sound card

. MIDI instrument
M__ ! ,
rinter ’
> console I/0




An |O-transparent Signal Function

 |O devices are now
treated just like other
sighal functions.

» The concept extends
further
- We can virtualize virtual objects (e.qg.
widgets)
- We can use “wormhole” signal functions
to perform non-local effects.



The Problem of
Resource Duplication

e Consider this code fragment:

_ <- midiSynth <- noteListl
_ <- midiSynth <- noteList?2

midisynth IS & single output device, but there are two
occurrences -- what happens?

Interleaving? Non-determinism?
» Likewise, here is an example of input:

randsl <- randomSF <- ()
rands2 <- randomSF <- ()

Do rands1 and rands2 return the same result, or are
they different?



Duplication resolved with

Resource Types

» Tag each virtualized object with a unique
resource type to prevent duplication.

midiSynth :: SF (S MidiSynth) (Event Notes) ()
randomSF :: SF (S RandomRT) () Double

e The first argument to SF is a set of resource
types; s midisynth and s randomrt @re singleton sets.

» With these types, the previous code fragments
will not type-check — resource types of
composed signal functions must be disjoint.

» Arrows, higher-order types, and type families
allow us to implement all this in Haskell.



Implementing Resource Types

» We need:
> Resource types
- A way to add resource types
- Restrictions on composition

» We cannot redefine function
application in general, so we use
arrows.



Arrows

e The standard Arrow class:

class Arrow a where

arr 2 (b ->c) >abc

first :: abc->a (b,d) (c,d)

(>>) ::abc->acd->abd
Toop ::a (b,d) (c,d) -> abc

 All arrow syntax Is translated into
these functions.



Arrows in use

__)‘__>

arr f

TR

stl >>> sf2

v

first sf

Toop st



Resource Type Inference Rules
FE:a—>[f

Farr E:SFOalp

FE:SFtaf

- first E:SF t (a,y) (B,y)
FE;:SFT af
FE,;:SFt'"af

d=1t"Nt"
t=t Urt"

- Ey >>>EySFtalf

- E:SFT(ay) (B,Y)
- loopE:SFtafp

(arr)

(first)

(>>>)

(loop)



Arrows with resource types

» We add a type parameter to Arrow:

class Arrow a where

arr :: (b -> c) -> a Empty b ¢
first :: arbc->ar (b,d (c,d)
(>>>) :: (Disjoint rl r2, Union rl r2 r3) =>

arlbc->ar2cd->ar3bd
Toop :ar (b,d) (c,d >arbc



Arrows with resource types

» We add a type parameter to Arrow:

class Arrow a where

arr :: (b -> c) -> a Empty b c

first :: arbc->ar (b,d (c,d)

(>>>) :: (Disjoint rl r2, union rl r2 r3) =
arlbc->ar2cd->ar3bd

Toop :ar (b,d) (c,d >arbc

e The pisjoint class assures that r1 and
r2 are disjoint.



Sets at the Type Level

» We represent type sets as either
Empty, Singleton sets, or Unions:

data Empty
data S a
data a U b

» Unioning sets Is easy, but testing
disjointness Is not.



Sets at the Type Level

» Set disjointness:

class Disjoint Xxs ys

instance Disjoint Empty ys

instance (ElemOf x ys HFalse) =>
Disjoint (S x) ys

instance (Disjoint xs zs, Disjoint ys zs) =>
Disjoint (xs U ys) zs



Sets at the Type Level

» Set disjointness:

class Disjoint Xxs ys

instance Disjoint Empty ys

instance (ElemOf x ys HFalse) =>
Disjoint (S x) ys

instance (Disjoint xs zs, Disjoint ys zs) =>
Disjoint (xs U ys) zs

e ... which requires set membership:

class ElemOof x ys b | x ys -> b

instance ElemOf x Empty HFalse

instance (TypeEq x y b) =>
Elemof x (S y) b

instance (ElemOof x ys bl, ElemOf x zs b2, OR bl b2 b) =>
Elemof x (ys U zs) b



Sets at the Type Level

e ... which requires set membership:

class Elemof x ys b | x ys -> b

instance ElemOf x Empty HFalse

instance (TypeEq x y b) =>
Elemof x (S y) b

instance (ElemOof x ys bl, ElemOf x zs b2, OR bl b2 b) =>
Elemof x (ys U zs) b

e ... Which requires type equality:

class TypeEqQ X y b | xy -> b

instance (HTrue ~ b) => TypeEq X X b
instance (HFalse ~ b) => TypeEq x y b



Arrows Into Signal Functions

» We Instantiate arrows with the
following signal function definition

data SF r a b = SF
{ sfFun :: a -> 10 (b, SF r a b) }

instance Arrow SF where
arr g = SF h
where h x = return (f x, SF h)

first (SF f) = SF (h f)
where h f (x, z) = do (y, SF f') <- f x
return ((y, z), SF (h "))
SF f >>> SF g=SF (h f g
where h f g x = do (y, SF f') <- f x
(z, SFg') <- gy
return (z, SF (h f' g'))



From I/O to Resource Types

» How do we make these SFs?

o Continuous SFs

source
sink
pipe

:: I0 c >
2 (b > 10 O) —>
:: (b -> I0 c) ->

> Event-based SFs

sourceEe ::
2 (b > 10 O) —>
2 (b -> 10 c) ->

sinkE
pipeE

IO ¢ —>

SF
SF
SF

SF
SF
SF

(s
(S
(s

(s
(S
(S

r)
r)
r)

r)
r)
r)

O (Event ©)
(Event b) O
(Event b) (Event c)



From I/O to Resource Types

» These functions can be easily defined:

© SF h where

_ f >>= return . (A\x -> (X, SF h))

source f
h

© sink f = SF h where

h x =f x> return (), SF h)
© pipe f = SF h where
h x =f x >>= return . (A\x -> (X, SF h))

e The event-based ones are more subtle

due to blocking and are outside the
scope of this talk.



From I/O to Resource Types

» With Haskell TO, we might have:

mSynth :: Notes -> IO ()

» Using resource typed SFs, we have:

data MIDISynth
midiSynth :: SF (S MidiSynth) (Event Notes) ()
midiSynth = sinkE mSynth

* Now our example from before won't
even type check:

_ <- midi th <= eListl
_ <- midiSsynth <- List2



Making a GUI with Resource Types

* For virtual objects, we use a modified
version of Euterpea’s UI.

» We first make some widgets

ampSlider :: UISF (S ASlider) QO Double

freqslider :: UISF (S FSlider) QO Double

graph :: UISF (S Graph) Double ()

ampSlider = title "Amplitude® $ hSlider (0, 1) 0.5
freqslider = title "Frequency®” $ hSlider (20, 2000) 400

graph realtimeGraph (400,300) 400 20 Black

(UISF is a special signal function to handle Ul.)



Making a GUI with Resource Types

e It's trivial to bind the widgets together:

type sinwavRTs = S FSlider U S ASlider U S Graph

sinGraph :: UISF sinwavRTs () O

sinGraph = proc _ -> do
f <- fregslider -< QO
a <- ampSlider -< 0O
s <- freqToSin -< f

graph -< s * a

freqToSin :: SF Empty Double Double

» Here Is this program in action



Adding Debugging data

» Perhaps we want to show debug data
generated by freqToSin.

» \We can update It to have type:

freqToSin :: SF Empty Double (Double, Double)

» But now all functions depending on
fregToSin will have type errors!



Wormholes

» We can use a wormhole to fix this.

data wormhole rl r2 a =
wormhole { whitehole :: SF (S rl) (O a,

blackhole :: SF (S r2) a (O }
makewormhole :: a -> wormhole rl r2 a

- Wormholes are basically just mutable
variables (I.e. memory locations).

makewormhole init = unsafePerformIO $ do
r <- newIORef init
return $ wormhole (source $ readIORef r)
(sink $ writeIorRef r)



Wormholes

 We can use a wormhole to fix this.

data wormhole rl r2 a =
wormhole { whitehole :: SF (S rl) (O a,
blackhole :: SF (S r2) a (O }
makewormhole :: a -> wormhole rl r2 a

- Wormholes are basically just mutable
variables (i.e. memory locations).

> With resource types, we can guarantee that
they are only ever written to in one place and
only ever read from in one place.

> This assures safety.



Wormholes

 Wormholes are tagged with one resource
type for reading and one for writing

data Debugw

data DebugB

wormhole :: wormHole Debugw DebugB Double
wormhole = makewormhole 0

» Now, freqToS1in writes to the wormhole,
and only Its resources:

fregToSin :: SF (S DebugB) Double Double



Wormholes

» We don’t even need to change

sinGraph. We simply read from the
wormhole for the stored debug info:

data DebugGraph
debugGraph :: UISF (S DebugGraph) Double ()
debugGraph = realtimeGraph (400,300) 400 20 Red

sinGraphwithDebug
:: UISF (sinwavRTs U S DebugB U
S Debugw U S DebugGraph) O O

sinGraphwithbDebug = proc _ -> do

_ <- sinGraph -< QO

d <- toUISF (whiteHole wormhole) -< ()

_ <- title “Debug” debugGraph -< d

returnA -< ()

o Another Demo



Future work

» Running signal functions in parallel
- SF work can be easily pushed to threads

- Perhaps we can use something like
wormholes to create safe communication
between threads

» Rebindable Syntax for Arrows

> Currently, arrow syntax in GHC doesn’t
accept resource types properly

» Local Resource Types
- Existential types for wormholes

- Type level counters for arbitrarily many virtual
resources



Conclusions

» Resource types clearly show what
resources are being used.

e They safely permit seemingly
dangerous non-local effects.

» They are straightforward and effective.



Questions






Extra Slides



Event-Based Signal Functions

e Transforming a continuous signal
function to an event based one Is easy.

TiftToEvent :: SF r a b -> SF r (Event a) (Event b)
1iftToEvent sf = proc a -> do
case a of
Event a' -> sf >>> arr Event -< a'
NOoEvent -> returnA -< NoEvent

» But this doesn't help if the signal
function blocks on input.



Running SFs in Parallel

» We need to run the blocking action In
parallel in a separate thread

e WWe use tosFE to do that:
toSFE :: SFr a b -> SF r (Event a) (Event b)

> toSFE cleverly uses chans to make sure
that data is available as soon as it's ready.

> toSFE has an interesting sister function:

fromSFE :: SF r (Event a) (Event b) -> SFr a b

°© par = fromSFE . toSFE :: SFr ab ->SFrab



UISF

» We based UISF on the Euterpea UI.

 How do we make UISF without
redoing all our Euterpea Ul work?



UISF

e There Is no reason to pin SF to the 10
monad. In practice, it has a monadic

argument:

data SFM m r a b = SFM
{ sfmFun :: a ->m (b, SFM m r a b) }

newtype SF = SFM IO

e S0, all we need Is a Ul monad that fits
nicely into SFM.



UISF

» Euterpea’s Ul monad.:

newtype UI a = UI
{ unul :: CX -> Signal (Input, Sys) ->
(signal (Action, Sys, a), Layout) }
newtype Signal a = Signal { unS :: [a] }

» This encapsulates a primitive signal

function with itself.
e It also has a static rendering context.



UISF

» |deally, we want something like:

newtype UI a = UI
{ unul :: (Input, Sys) -> (Action, Sys, a) }

 This Is the signal portion, but we also
need the context portion:

newtype UICTX a = UICTX
{ unUICTX :: CTX -> (Layout, a) }

» Together, we achieve:

newtype UISF r a b =
UISF (UICTX (SFM UI r a b))



