
Virtualizing Real-World 

Objects in FRP 

Daniel Winograd-Cort 
 

Department of Computer Science 

Yale University 

 
 

Haskell Implementors’ Workshop 

September 23, 2011 



The Context: 

Functional Reactive Programming 

 Programming with continuous values and 
streams of events. 

 Like drawing signal processing diagrams: 

 
 

 

 

 Previously used in: 

◦ Yampa:      robotics, vision, animation 

◦ Nettle:        networking 

◦ Euterpea:  sound synthesis and audio processing 

 
signal 

function 
y x 

signal processing diagram 

y <- sigfun -< x 

equivalent arrow syntax in Haskell 



Understanding arrow syntax 

 Let’s write a program that integrates a 

signal and then doubles it: 
 
 
 arrow syntax in Haskell 

sigfun :: SF Double Double 
sigfun = proc x -> do 
    y <- integral -< x 
    returnA -< 2 * y 

signal processing diagram 

integral 
 * x 2 



The IO bottleneck of FRP 

Run-time System 

 

 

 

 

Main Program 
(a signal function) 

MIDI synthesizer 

printer 
console I/O 

MIDI instrument 

mouse 

game 

controller 

electric piano 

sound card 



Add transparency by moving the 

devices into the signal function 

Run-time System 

 

 

 

 

Main Program 
(a signal function) 

Main Program 
 

MIDI synthesizer 

printer 
console I/O 

MIDI instrument 

game 

controller 

electric piano 

sound card 

mouse 



An IO-transparent Signal Function 

MIDI synthesizer 

printer 
console I/O 

MIDI instrument 

mouse 

game 

controller 

electric piano 

sound card 

Main Program 

sf1 

sf3 sf4 

sf5 

sf6 

sf7 

sf2 



An IO-transparent Signal Function 

 IO devices are now  

treated just like other  

signal functions. 

 The concept extends  

further 

◦ We can virtualize virtual objects (e.g. 

widgets) 

◦ We can use “wormhole” signal functions 

to perform non-local effects. 

 



The Problem of  

Resource Duplication 
 Consider this code fragment: 

 

_ <- midiSynth <- noteList1 
_ <- midiSynth <- noteList2 
 

midiSynth is a single output device, but there are two 

occurrences -- what happens? 

        Interleaving?  Non-determinism? 

 Likewise, here is an example of input: 
 

rands1 <- randomSF <- () 
rands2 <- randomSF <- () 

Do rands1 and rands2 return the same result, or are 

they different? 



Duplication resolved with 

Resource Types 
 Tag each virtualized object with a unique 

resource type to prevent duplication. 
 

midiSynth :: SF (S MidiSynth) (Event Notes) () 
randomSF  :: SF (S RandomRT)  ()            Double 
 

 The first argument to SF is a set of resource 

types; S MidiSynth and S RandomRT are singleton sets. 

 With these types, the previous code fragments 

will not type-check – resource types of 

composed signal functions must be disjoint. 

 Arrows, higher-order types, and type families 

allow us to implement all this in Haskell. 

 



Implementing Resource Types 

 We need: 

◦ Resource types 

◦ A way to add resource types 

◦ Restrictions on composition 

 We cannot redefine function 

application in general, so we use 

arrows. 



Arrows 

 The standard Arrow class: 
 
class Arrow a where 
  arr    :: (b -> c) -> a b c 
  first  :: a b c -> a (b,d) (c,d) 
  (>>>)  :: a b c -> a c d -> a b d 
  loop   :: a (b,d) (c,d) -> a b c 

 All arrow syntax is translated into 

these functions. 



Arrows in use 

f 

arr f 

sf1 sf2 

sf1 >>> sf2 

sf 

first sf 

sf 

loop sf 



Resource Type Inference Rules 



Arrows with resource types 

 We add a type parameter to Arrow: 
 

class Arrow a where 
  arr    :: (b -> c) -> a Empty b c 
  first  :: a r b c -> a r (b,d) (c,d) 
  (>>>)  :: (Disjoint r1 r2, Union r1 r2 r3) => 
              a r1 b c -> a r2 c d -> a r3 b d 
  loop   :: a r (b,d) (c,d) -> a r b c 

   



Arrows with resource types 

 We add a type parameter to Arrow: 
 

class Arrow a where 
  arr    :: (b -> c) -> a Empty b c 
  first  :: a r b c -> a r (b,d) (c,d) 
  (>>>)  :: (Disjoint r1 r2, Union r1 r2 r3) => 
              a r1 b c -> a r2 c d -> a r3 b d 
  loop   :: a r (b,d) (c,d) -> a r b c 
 

 The Disjoint class assures that r1 and 

r2 are disjoint. 



Sets at the Type Level 

 We represent type sets as either 

Empty, Singleton sets, or Unions: 
 
data Empty 
data S a 
data a `U` b 
 

 Unioning sets is easy, but testing 

disjointness is not. 



Sets at the Type Level 

 Set disjointness: 
 
class Disjoint xs ys 
 

instance Disjoint Empty ys 
instance (ElemOf x ys HFalse) =>  
    Disjoint (S x) ys 
instance (Disjoint xs zs, Disjoint ys zs) =>  
    Disjoint (xs `U` ys) zs 



Sets at the Type Level 

 … which requires set membership: 
 
class ElemOf x ys b | x ys -> b 
 

instance ElemOf x Empty HFalse 
instance (TypeEq x y b) =>  
    ElemOf x (S y) b 
instance (ElemOf x ys b1, ElemOf x zs b2, OR b1 b2 b) =>  
    ElemOf x (ys `U` zs) b 

 Set disjointness: 
 
class Disjoint xs ys 
 

instance Disjoint Empty ys 
instance (ElemOf x ys HFalse) =>  
    Disjoint (S x) ys 
instance (Disjoint xs zs, Disjoint ys zs) =>  
    Disjoint (xs `U` ys) zs 



Sets at the Type Level 

 … which requires set membership: 
 
class ElemOf x ys b | x ys -> b 
 

instance ElemOf x Empty HFalse 
instance (TypeEq x y b) =>  
    ElemOf x (S y) b 
instance (ElemOf x ys b1, ElemOf x zs b2, OR b1 b2 b) =>  
    ElemOf x (ys `U` zs) b 
 

 … which requires type equality: 
 
class TypeEq x y b | x y -> b 
 

instance (HTrue ~ b)  => TypeEq x x b 
instance (HFalse ~ b) => TypeEq x y b 



Arrows into Signal Functions 

 We instantiate arrows with the 

following signal function definition 
 

data SF r a b = SF 
  { sfFun :: a -> IO (b, SF r a b) } 
 

  instance Arrow SF where 
  arr g = SF h 
    where h x = return (f x, SF h) 
 

  first (SF f) = SF (h f) 
    where h f (x, z) = do (y, SF f') <- f x 
                          return ((y, z), SF (h f')) 
 

  SF f >>> SF g = SF (h f g) 
    where h f g x = do (y, SF f') <- f x 
                       (z, SF g') <- g y 
                       return (z, SF (h f' g')) 



From I/O to Resource Types 

 How do we make these SFs? 
 

◦ Continuous SFs 
 

source  :: IO c ->         SF (S r) () c 
sink    :: (b -> IO ()) -> SF (S r) b  () 
pipe    :: (b -> IO c) ->  SF (S r) b  c 
 

◦ Event-based SFs 
 
sourceE :: IO c ->         SF (S r) () (Event c) 
sinkE   :: (b -> IO ()) -> SF (S r) (Event b)  () 
pipeE   :: (b -> IO c) ->  SF (S r) (Event b) (Event c) 



From I/O to Resource Types 

 These functions can be easily defined: 

◦  source f = SF h where 
     h _  = f   >>= return . (\x -> (x, SF h)) 

◦  sink   f = SF h where 
     h x  = f x >>  return ((), SF h) 

◦  pipe   f =  SF h where 
     h x  = f x >>= return . (\x -> (x, SF h)) 

 The event-based ones are more subtle 

due to blocking and are outside the 

scope of this talk. 



From I/O to Resource Types 

 With Haskell IO, we might have: 
 

mSynth  :: Notes -> IO () 
 

 Using resource typed SFs, we have: 
 

data MIDISynth 
midiSynth  :: SF (S MidiSynth) (Event Notes) () 
midiSynth  =  sinkE mSynth 
 

 Now our example from before won’t 

even type check: 
 

_ <- midiSynth <- noteList1 
_ <- midiSynth <- noteList2 



Making a GUI with Resource Types 

 For virtual objects, we use a modified 

version of Euterpea’s UI. 

 We first make some widgets 
 

ampSlider  :: UISF (S ASlider) ()     Double 
freqSlider :: UISF (S FSlider) ()     Double 
graph      :: UISF (S Graph)   Double () 
 
ampSlider  = title "Amplitude“ $ hSlider (0, 1)     0.5  
freqSlider = title "Frequency“ $ hSlider (20, 2000) 400 
graph      = realtimeGraph (400,300) 400 20 Black 

 

(UISF is a special signal function to handle UI.) 



Making a GUI with Resource Types 

 It’s trivial to bind the widgets together: 
 
type sinWavRTs = S FSlider `U` S ASlider `U` S Graph 
 

sinGraph :: UISF sinWavRTs () () 
sinGraph = proc _ -> do 
    f  <-  freqSlider  -< () 
    a  <-  ampSlider   -< () 
    s  <-  freqToSin   -< f 
    graph -< s * a 
 
freqToSin :: SF Empty Double Double 
 

 Here is this program in action 



Adding Debugging data 

 Perhaps we want to show debug data 

generated by freqToSin. 

 We can update it to have type: 
 

freqToSin :: SF Empty Double (Double, Double) 
 

 But now all functions depending on 

freqToSin will have type errors! 



Wormholes 

 We can use a wormhole to fix this. 
   
  data Wormhole r1 r2 a = 
      Wormhole { whitehole :: SF (S r1) () a, 
                 blackhole :: SF (S r2) a  () } 
  makeWormhole :: a -> Wormhole r1 r2 a 
 

◦ Wormholes are basically just mutable 

variables (i.e. memory locations). 
 
makeWormhole init = unsafePerformIO $ do 
    r <- newIORef init 
    return $ Wormhole (source $ readIORef  r) 
                      (sink   $ writeIORef r) 



Wormholes 

 We can use a wormhole to fix this. 
   
  data Wormhole r1 r2 a = 
      Wormhole { whitehole :: SF (S r1) () a, 
                 blackhole :: SF (S r2) a  () } 
  makeWormhole :: a -> Wormhole r1 r2 a 
 

◦ Wormholes are basically just mutable 

variables (i.e. memory locations). 

◦ With resource types, we can guarantee that 

they are only ever written to in one place and 

only ever read from in one place. 

◦ This assures safety. 



Wormholes 

 Wormholes are tagged with one resource 
type for reading and one for writing 
 

data DebugW 
data DebugB 
wormhole :: WormHole DebugW DebugB Double 
wormhole = makeWormhole 0 

 Now, freqToSin writes to the wormhole, 

and only its resources: 
 
freqToSin :: SF (S DebugB) Double Double 
 



Wormholes 

 We don’t even need to change 

sinGraph.  We simply read from the 

wormhole for the stored debug info: 
 

data DebugGraph 
debugGraph :: UISF (S DebugGraph) Double () 
debugGraph = realtimeGraph (400,300) 400 20 Red 
 

sinGraphWithDebug 
  :: UISF (sinWavRTs `U` S DebugB  `U` 
           S DebugW  `U` S DebugGraph) () () 
sinGraphWithDebug = proc _ -> do 
    _ <- sinGraph -< () 
    d <- toUISF (whiteHole wormhole) -< () 
    _ <- title “Debug” debugGraph -< d 
    returnA -< () 

 Another Demo 



Future work 

 Running signal functions in parallel 
◦ SF work can be easily pushed to threads 

◦ Perhaps we can use something like 
wormholes to create safe communication 
between threads 

 Rebindable Syntax for Arrows 
◦ Currently, arrow syntax in GHC doesn’t 

accept resource types properly 

 Local Resource Types 
◦ Existential types for wormholes 

◦ Type level counters for arbitrarily many virtual 
resources 



Conclusions 

 Resource types clearly show what 

resources are being used. 

 They safely permit seemingly 

dangerous non-local effects. 

 They are straightforward and effective. 



Questions 





Extra Slides 



Event-Based Signal Functions 

 Transforming a continuous signal 

function to an event based one is easy. 
 

liftToEvent :: SF r a b -> SF r (Event a) (Event b) 
liftToEvent sf = proc a -> do 
    case a of 
        Event a' -> sf >>> arr Event -< a' 
        NoEvent  -> returnA -< NoEvent 
 

 But this doesn’t help if the signal 

function blocks on input. 



Running SFs in Parallel 

 We need to run the blocking action in 

parallel in a separate thread 

 We use toSFE to do that: 
 

  toSFE :: SF r a b -> SF r (Event a) (Event b) 

◦  toSFE cleverly uses Chans to make sure 

that data is available as soon as it’s ready. 

◦  toSFE has an interesting sister function: 
 

fromSFE :: SF r (Event a) (Event b) -> SF r a b 

◦  par = fromSFE . toSFE :: SF r a b -> SF r a b 



UISF 

 We based UISF on the Euterpea UI. 

 How do we make UISF without 

redoing all our Euterpea UI work? 



UISF 

 There is no reason to pin SF to the IO 

monad.  In practice, it has a monadic 

argument: 
 

data SFM m r a b = SFM 
  { sfmFun :: a -> m (b, SFM m r a b) } 
newtype SF = SFM IO 

 So, all we need is a UI monad that fits 

nicely into SFM. 



UISF 

 Euterpea’s UI monad: 
 

newtype UI a = UI 
  { unUI :: CX -> Signal (Input, Sys) -> 
            (Signal (Action, Sys, a), Layout) } 
newtype Signal a = Signal { unS :: [a] } 
 

 This encapsulates a primitive signal 

function with itself. 

 It also has a static rendering context. 



UISF 

 Ideally, we want something like: 
 

newtype UI a = UI 
  { unUI :: (Input, Sys) -> (Action, Sys, a) } 
 

 This is the signal portion, but we also 
need the context portion: 
 

newtype UICTX a = UICTX 
  { unUICTX :: CTX -> (Layout, a) } 
 

 Together, we achieve: 
 

newtype UISF r a b =  
  UISF (UICTX (SFM UI r a b)) 

 


