HASKELL QUICK REFERENCE

LEXICAL SYNTAX

Comments
- -- end-of-line comment
{--} {- multi-line comment {-with nesting-} -}

{-# #-} {-# PRAGMA usually a helpful hint to the compiler #-}
Identifier names

eat3Chars functions, variables and type variables start with lowercase
Double concrete typenames / constructors start with uppercase

a typically, variable names in argument positions are short
foo_Bar’34baz underscores _, primes ‘, digits, mixed case, are permitted
a++b symbols are infix operator names, ++ takes two arguments
a:-b symbols starting with a colon : are infix constructor names
(++)ab an infix symbol can be used prefix, by enclosing in parens
a‘foo' b a prefix name can be used infix, by enclosing in backquotes
Strings

“hello world” strings use double-quotes

‘c’ character constants use single quotes

Lists have two constructors, empty [], and cons (:) which joins one elem to a list

(x 1 xs) a list with x at the front, xs is the rest of the list

(x:y:z:[) a list of three things

[xy, 2] square brackets with commas are sugar for (x:y:z:[])
[2..15] list containing a numeric range

[2,4..16] list containing a stepped numeric range

[40,39.. 0] ranges can go down as well as up

Tuples

(x,y) a paired value - in round parentheses with commas
(x,y,2) a triple of values

Numbers

42 value of any number type: Int, Integer, Float, Double, etc
42.0 value of any fractional type: Float, Double, Rational, Complex
1.2e3 scientific notation (= 1.2 x 1013)

Equals symbols

= single = is a definition of a value

== double == is a comparison operator returning a Boolean
Lambda notation

(\x-> foo) backslash is a poor ASCII version of the lambda symbol

-> ASCII version of a right arrow (used in lambdas, case
discrimination, and types of functions)

Layout

defn Indentation is used intuitively to indicate logical structuring:

where defn2
{ defn; defn; }

anything indented right to the right “belongs” in this group

Indentation can be overridden by using explicit braces and
semicolons.

IEEE VISWEEK TUTORIAL 2008

Function application

fx space between function name f and argument expression x
f$x function f applied to expression x (but right-associative)
X ++Yy operators (symbols) are applied infix

(++) xy an infix operator can be applied prefix by enclosing in parens
xfy a prefix function can be applied infix, enclosed in backquotes
f (3+4) (not y) round parentheses to group and nest function applications
(+1) a function/operator can be partially applied to only some args
Anonymous functions

backslash pretends to be a lambda.
this anonymous function names its argument x

this anonymous function pattern-matches its list argument

\x -> expr

\ (x:xs) -> expr
(\x -> x+3) 5
Data construction
Build (1+2) True

often need parentheses around a lambda term to apply it

Values are built by applying a data constructor as a function

Local naming

letfx =rhsin define a function f which can only be used within the given

expr expr

let (x:xs) = rhs in |evaluate the rhs, whose result is a list. Pattern-match the

expr components of the list, then use the names x and xs within
the expr

Conditionals

if a then b else ¢ a, b, and c are any expressions of the right types

case expr of discriminate between alternative constructions of the value
pat0 -> expr0 | denoted by expr - alternative patterns are indented.
pat1 -> expr1 | a catch-all default case is called otherwise
otherwise -> e

Sequencing evaluation

do pat <- iocomp evaluate the side-effecting computation iocomp, and pattern-
(x:xs) <- action ' match its result against pat, for use in later actions.
something x subsequent actions are indented to match the first one.
returny actions can use variables bound by patterns higher up.

Pattern-matching and binding

f(Cx?3) functions can pattern-match their arguments. A pattern is an
application of a constructor to either literal values, fresh
variable names, or other patterns.

f(C (2:3:y) 3) patterns can be nested. The value of the rest of the list after

the first two elements is bound to the name y if the first two
elements match the given pattern

case expr of when there are multiple overlapping patterns, e.g. in a case
pat0 -> expr0 |expression or in a series of equations defining a function, the
pat1 -> expr1 | patterns are matched top-to-bottom, left-to-right.
otherwise -> e

DEFINITIONS

Function definition (function names start with a lower-case letter)

fut the function named f “has type” t. Known as a type
signature.

farg0 arg1 = rhs function named f has two named arguments, result is rhs

f (x:xs) = rhs function pattern-matches on its list argument, naming its
parts
fxy=rhs an equational definition can have local definitions

where rhs = expr contained in an indented “where” clause

fn|n<0=rhsNeg
| n >0 = rhsPos

guards on equations: tests are indented with vertical bar.
there are multiple right-hand-sides, each guarded by a
test

Type definition (type names and constructors start with an Upper-case letter)

dataTa=Calnt user-defined datatype T takes a type parameter ‘a’
values of type T are constructed using C
values of type T contain one value of type ‘a’ and an Int

user-defined datatype U
values of type U can be either a V construction, W, or X

M is a synonym for T Bool - the names are
interchangeable

dataU=V|W|X
type M =T Bool

newtype N = N (T U) |Nis like a synonym for (T U), except the names are not
interchangeable
Other top-level definitions

module M where every module has a capitalised name

import Data.Word import and use functions from another module

define a predicate over types.
class methods are indented, and must give a type
signature

class C a where
method :: type

instance C Int where instance of a class predicate for a specific type.
method = impl the class method definition is indented - no type signature

Basic types

Int limited precision signed integers (e.g. 30 bits)

Integer arbitrary precision signed integers

Rational arbitrary precision fractional numbers

Float floating-point limited-precision fractional numbers

Double double-word floating-point limited-precision fractionals

Bool Booleans (constants: True, False)

Char single Unicode characters

String textual sequence of characters (= [Char])

Bigger types

(a,b) pair of types a and b (a and b are type variables)

[a] list with element type a (a stands for any type)

a->b function with argument type a, result type b

a->b->c function with two arguments, of types a and b, result type
c

