HASKELL QUICK REFERENCE

LEXICAL SYNTAX

Comments
- -- end-of-line comment
{--} {- multi-line comment {-with nesting-} -}

{-# #-} {-# PRAGMA usually a helpful hint to the compiler #-}
Identifier names

eat3Chars functions, variables and type variables start with lowercase
Double concrete typenames / constructors start with uppercase

a typically, variable names in argument positions are short
foo_Bar’34baz underscores _, primes ‘, digits, mixed case, are permitted
a++b symbols are infix operator names, ++ takes two arguments
a:-b symbols starting with a colon : are infix constructor names
(++)ab an infix symbol can be used prefix, by enclosing in parens
a‘foo' b a prefix name can be used infix, by enclosing in backquotes
Strings

“hello world” strings use double-quotes

‘c’ character constants use single quotes

Lists have two constructors, empty [], and cons (:) which joins one elem to a list

(x 1 xs) a list with x at the front, xs is the rest of the list

(x:y:z:[) a list of three things

[xy, 2] square brackets with commas are sugar for (x:y:z:[])
[2..15] list containing a numeric range

[2,4..16] list containing a stepped numeric range

[40,39.. 0] ranges can go down as well as up

Tuples

(x,y) a paired value - in round parentheses with commas
(x,y,2) a triple of values

Numbers

42 value of any number type: Int, Integer, Float, Double, etc
42.0 value of any fractional type: Float, Double, Rational, Complex
1.2e3 scientific notation (= 1.2 x 1013)

Equals symbols

= single = is a definition of a value

== double == is a comparison operator returning a Boolean
Lambda notation

(\x-> foo) backslash is a poor ASCII version of the lambda symbol

-> ASCII version of a right arrow (used in lambdas, case
discrimination, and types of functions)

Layout

defn Indentation is used intuitively to indicate logical structuring:

where defn2
{ defn; defn; }

anything indented right to the right “belongs” in this group

Indentation can be overridden by using explicit braces and
semicolons.
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Function application

fx space between function name f and argument expression x
f$x function f applied to expression x (but right-associative)
X ++Yy operators (symbols) are applied infix

(++) xy an infix operator can be applied prefix by enclosing in parens
xfy a prefix function can be applied infix, enclosed in backquotes
f (3+4) (not y) round parentheses to group and nest function applications
(+1) a function/operator can be partially applied to only some args
Anonymous functions

backslash pretends to be a lambda.
this anonymous function names its argument x

this anonymous function pattern-matches its list argument

\x -> expr

\ (x:xs) -> expr
(\x -> x+3) 5
Data construction
Build (1+2) True

often need parentheses around a lambda term to apply it

Values are built by applying a data constructor as a function

Local naming

letfx =rhsin define a function f which can only be used within the given

expr expr

let (x:xs) = rhs in |evaluate the rhs, whose result is a list. Pattern-match the

expr components of the list, then use the names x and xs within
the expr

Conditionals

if a then b else ¢ a, b, and c are any expressions of the right types

case expr of discriminate between alternative constructions of the value
pat0 -> expr0 | denoted by expr - alternative patterns are indented.
pat1 -> expr1 | a catch-all default case is called otherwise
otherwise -> e

Sequencing evaluation

do pat <- iocomp evaluate the side-effecting computation iocomp, and pattern-
(x:xs) <- action ' match its result against pat, for use in later actions.
something x subsequent actions are indented to match the first one.
returny actions can use variables bound by patterns higher up.

Pattern-matching and binding

f(Cx?3) functions can pattern-match their arguments. A pattern is an
application of a constructor to either literal values, fresh
variable names, or other patterns.

f(C (2:3:y) 3) patterns can be nested. The value of the rest of the list after

the first two elements is bound to the name y if the first two
elements match the given pattern

case expr of when there are multiple overlapping patterns, e.g. in a case
pat0 -> expr0 |expression or in a series of equations defining a function, the
pat1 -> expr1 | patterns are matched top-to-bottom, left-to-right.
otherwise -> e

DEFINITIONS

Function definition (function names start with a lower-case letter)

fut the function named f “has type” t. Known as a type
signature.

farg0 arg1 = rhs function named f has two named arguments, result is rhs

f (x:xs) = rhs function pattern-matches on its list argument, naming its
parts
fxy=rhs an equational definition can have local definitions

where rhs = expr  contained in an indented “where” clause

fn|n<0=rhsNeg
| n >0 = rhsPos

guards on equations: tests are indented with vertical bar.
there are multiple right-hand-sides, each guarded by a
test

Type definition (type names and constructors start with an Upper-case letter)

dataTa=Calnt user-defined datatype T takes a type parameter ‘a’
values of type T are constructed using C
values of type T contain one value of type ‘a’ and an Int

user-defined datatype U
values of type U can be either a V construction, W, or X

M is a synonym for T Bool - the names are
interchangeable

dataU=V|W|X
type M =T Bool

newtype N = N (T U) |Nis like a synonym for (T U), except the names are not
interchangeable
Other top-level definitions

module M where every module has a capitalised name

import Data.Word import and use functions from another module

define a predicate over types.
class methods are indented, and must give a type
signature

class C a where
method :: type

instance C Int where instance of a class predicate for a specific type.
method = impl the class method definition is indented - no type signature

Basic types

Int limited precision signed integers (e.g. 30 bits)

Integer arbitrary precision signed integers

Rational arbitrary precision fractional numbers

Float floating-point limited-precision fractional numbers

Double double-word floating-point limited-precision fractionals

Bool Booleans (constants: True, False)

Char single Unicode characters

String textual sequence of characters ( = [Char] )

Bigger types

(a,b) pair of types a and b (a and b are type variables)

[a] list with element type a (a stands for any type)

a->b function with argument type a, result type b

a->b->c function with two arguments, of types a and b, result type
c



