A new, modular
dependency solver for cabal-install

Andres Loh Duncan Coutts
Well-Typed LLP Well-Typed LLP

HIW 2011

23 September 2011

Why?

» Error messages are suboptimal.

» We want the solver to be more configurable.

» Solver is difficult to extend (current design is rather
ad-hoc).

®Well-Typed

Why now?

We have started to work on this as part of a project funded by
the Industrial Haskell Group.

Original trigger: support “private dependencies”.

®Well-Typed

Why now?

We have started to work on this as part of a project funded by
the Industrial Haskell Group.

Original trigger: support “private dependencies”.

Status

» New solver is implemented.

» “At least as good” as the old solver
— when used with ghc-7. %

» Ready for experimentation.
» Some new features prepared, but not yet implemented.

®Well-Typed

Talk overview

v

Dependencies in Cabal
Architecture of the new solver

v

v

Private dependencies
Error messages
Remaining work

v

v

®Well-Typed

Dependencies in Cabal

cabal-install internals

When you call cabal install,

®Well-Typed

cabal-install internals

When you call cabal install,
1. the Hackage index is read,
2. the installed packages index is read,

®Well-Typed

cabal-install internals

When you call cabal install,
1. the Hackage index is read,
2. the installed packages index is read,
3. the solver is invoked to produce an install plan,

®Well-Typed

cabal-install internals

When you call cabal install,
1. the Hackage index is read,
2. the installed packages index is read,
3. the solver is invoked to produce an install plan,
4. the install plan is sanity checked,

®Well-Typed

cabal-install internals

When you call cabal install,

the Hackage index is read,

the installed packages index is read,

the solver is invoked to produce an install plan,
the install plan is sanity checked,

the install plan is executed (or printed).

o R oob=

®Well-Typed

cabal-install internals

When you call cabal install,

the Hackage index is read,

the installed packages index is read,

the solver is invoked to produce an install plan,
the install plan is sanity checked,

the install plan is executed (or printed).

o R oob=

®Well-Typed

cabal-install internals

When you call cabal install,

the Hackage index is read,

the installed packages index is read,

the solver is invoked to produce an install plan,
the install plan is sanity checked,

the install plan is executed (or printed).

o R oob=

Independent sanity check makes it relatively easy to trust the
new solver.

®Well-Typed

Terminology

Index database of information about
packages (can be built from many
indices)

Location an index location (such as Hackage,
or your installed packages)

Package Name a name such as mtl or threadscope
Version aversionsuchas1.1.0.2

Instance a triple of a name, version and

location
Instance Constraint restrictions on version and location
Dependency a pair of a name and a constraint

®Well-Typed

Cabal dependency problem

» Cabal files can specify dependencies based on boolean
flags.

®Well-Typed

Cabal dependency problem

» Cabal files can specify dependencies based on boolean
flags.

» The complete transitive dependency closure of a package
is needed to uniquely identify it (ABI hash).

®Well-Typed

Cabal dependency problem

» Cabal files can specify dependencies based on boolean
flags.

» The complete transitive dependency closure of a package
is needed to uniquely identify it (ABI hash).

» In other words: installed instances have fixed
dependencies, new instances have flexible dependencies.

®Well-Typed

Cabal dependency problem

» Cabal files can specify dependencies based on boolean
flags.

» The complete transitive dependency closure of a package
is needed to uniquely identify it (ABI hash).

» In other words: installed instances have fixed
dependencies, new instances have flexible dependencies.

» In general, one application cannot use multiple instances
of the same package.

®Well-Typed

Cabal dependency problem

» Cabal files can specify dependencies based on boolean
flags.

» The complete transitive dependency closure of a package
is needed to uniquely identify it (ABI hash).

» In other words: installed instances have fixed
dependencies, new instances have flexible dependencies.

» In general, one application cannot use multiple instances
of the same package.

» With ghc-pkg, we can install many instances of one
package, but only one instance per package version.

®Well-Typed

Approach of the old solver

Conservative approach

Tries to select a unique instance per package in an install plan.

®Well-Typed

Approach of the old solver

Conservative approach

Tries to select a unique instance per package in an install plan.

Furthermore:
Never backtracks (but looks ahead a bit).
Exclude packages that can’t be configured (relatively new).

v

v

v

Flag resolution tied to package selection.

Maintains hardly any information about the order in which
packages are resolved.

v

®Well-Typed

Cabal can break your system

S
©)

Assume B-1 depends on any version of A.

®Well-Typed

Cabal can break your system

You install B-1 on your system, fixing the dependency to A-1.

®Well-Typed

Cabal can break your system

Many other packages that depend on B-1 are installed later.

®Well-Typed

Cabal can break your system

Now we want to install D which depends on A-2 (!) and B.

®Well-Typed

Cabal can break your system

Since B still depends on A, the install plan selects A-2.

®Well-Typed

Cabal can break your system

Upon actual installation, the old B-1 is destructively updated ...

®Well-Typed

About destructive updates

Proper solution

NixOS-style package database — no destructive updates, ever.

®Well-Typed

About destructive updates

Proper solution

NixOS-style package database — no destructive updates, ever.

Other options

» warn explicitly about destructive updates

» discourage or prevent destructive updates in the solver
options

®Well-Typed

The new solver

The algorithm
1. Build (lazily) an approximation of the search tree.

The tree contains all valid solutions (but may contain wrong
ones).

®Well-Typed

The algorithm

1. Build (lazily) an approximation of the search tree.
The tree contains all valid solutions (but may contain wrong
ones).

2. Validate the search tree.
The resulting tree contains only valid solutions.

®Well-Typed

The algorithm

1. Build (lazily) an approximation of the search tree.
The tree contains all valid solutions (but may contain wrong
ones).

2. Validate the search tree.
The resulting tree contains only valid solutions.

3. Rearrange and optimize the search tree.
Many independent traversals over the tree. This is what
makes the solver modular.

®Well-Typed

The algorithm

1. Build (lazily) an approximation of the search tree.
The tree contains all valid solutions (but may contain wrong
ones).

2. Validate the search tree.
The resulting tree contains only valid solutions.

3. Rearrange and optimize the search tree.
Many independent traversals over the tree. This is what
makes the solver modular.

4. Explore the search tree.
Once a solution is found, we turn it into an install plan.

®Well-Typed

The algorithm

1. Build (lazily) an approximation of the search tree.
The tree contains all valid solutions (but may contain wrong
ones).

2. Validate the search tree.
The resulting tree contains only valid solutions.

3. Rearrange and optimize the search tree.
Many independent traversals over the tree. This is what
makes the solver modular.

4. Explore the search tree.
Once a solution is found, we turn it into an install plan.

Inspired by ...

Thomas Nordin and Andrew Tolmach, Modular Lazy Search for
Constraint Satisfaction Problems, JFP, 2001

®Well-Typed

The algorithm

solve cfg idx userPrefs userConstraints userGoals =
explorePhase $
heuristicsPhase $
preferencesPhase $
validationPhase $
prunePhase $
buildPhase
where
buildPhase ::Tree...
prunePhase :Tree...— Tree...

explorePhase :: Tree ... — Log (Assignment, RevDepMap)

®Well-Typed

The search tree

data Tree a =
PChoice QPN a (PSQl (Tree a))
| FChoice QFN a Bool (PSQ Bool (Tree a))
| GoalChoice (PSQ OpenGoal (Tree a))
| Done RevDepMap
| Fail (ConflictSet QPN) FailReason

®Well-Typed

The search tree

data Tree a =
PChoice QPN a (PSQl (Tree a))
| FChoice QFN a Bool (PSQ Bool (Tree a))
| GoalChoice (PSQ OpenGoal (Tree a))
| Done RevDepMap
| Fail (ConflictSet QPN) FailReason

» Nodes represent goals / choices.
» Edges represent assignments.
» The search tree is not the dependency tree.

®Well-Typed

The search tree

Several kinds of nodes:

Goal Choice to give some flexibility to the order in
which goals are solved

®Well-Typed

The search tree

Several kinds of nodes:

Goal Choice to give some flexibility to the order in
which goals are solved
Package Goals to pick an instance for a given name
Flag Goals to select a boolean for a given flag for
a given package

®Well-Typed

The search tree

Several kinds of nodes:

Goal Choice to give some flexibility to the order in

which goals are solved

Package Goals to pick an instance for a given name

Flag Goals to select a boolean for a given flag for
a given package
Success to indicate that a solution has been
found
Fail to explicitly indicate failure

®Well-Typed

The search tree

Several kinds of nodes:

Goal Choice to give some flexibility to the order in

which goals are solved

Package Goals to pick an instance for a given name

Flag Goals to select a boolean for a given flag for
a given package
Success to indicate that a solution has been
found
Fail to explicitly indicate failure

All nodes are equipped with additional info.

Note that goal-choice nodes have a different semantics from
single-goal nodes.

®Well-Typed

Building the tree

Keep track of current goals:

v

build goal choice node

v

build goal-specific nodes
add new goals depending on choice if needed
if no goals left, end with a success node

v

v

®Well-Typed

Validating the tree

Keep track of constraints:
» use constraints to remove choices
» but keep disabled choices around (for error messages)

» add new constraints corresponding to the choices while
moving down

After validation, the tree contains just correct solutions.

®Well-Typed

Reorderings

» exploration will in essence proceed depth-first, left-to-right
» the order of subtrees in the choice nodes is relevant
» we can thus express preferences by reordering

®Well-Typed

Typical preferences

» Prefer later versions over older versions.
» Prefer installed instances over non-installed ones.

®Well-Typed

Typical preferences

» Prefer later versions over older versions.
» Prefer installed instances over non-installed ones.

packageOrderFor :: (PN — Bool) —
(PN — I — | — Ordering) —
Tree a — Tree a
packageOrderFor p cmp = trav go

where
go (PChoiceF v@(Q _pn) r cs)
| ppn = PChoiceF v r
(sortByKeys (flip (cmp pn)) cs)
| otherwise = PChoiceF v r cs
go X =X

®Well-Typed

Goal heuristics

Goal choices allow us to do some limited look-ahead:
» Prefer goals that lead to immediate failure.

» Prefer goals (package names and flags) that have only one
allowed choice.

®Well-Typed

Goal heuristics

Goal choices allow us to do some limited look-ahead:
» Prefer goals that lead to immediate failure.

» Prefer goals (package names and flags) that have only one
allowed choice.

Because it does never make sense to backtrack in goal-choice
nodes, we actually leave only the first goal choice after applying
goal heuristics.

®Well-Typed

Backjumping

We prune the tree by propagating failure information up.
Key observation

Not all the nodes on a path to a conflict actually contribute to
that conflict.

®Well-Typed

Backjumping

We prune the tree by propagating failure information up.
Key observation
Not all the nodes on a path to a conflict actually contribute to

that conflict.

So in many cases we can prune entire failing subtrees quickly.

®Well-Typed

Backjumping

We prune the tree by propagating failure information up.
Key observation
Not all the nodes on a path to a conflict actually contribute to

that conflict.

So in many cases we can prune entire failing subtrees quickly.

We also use conflict set info for error messages.

®Well-Typed

Exploring the tree

Mainly depth-first, left-to-right being used, but with various
degrees of debugging info being produced.

®Well-Typed

Exploring the tree

Mainly depth-first, left-to-right being used, but with various
degrees of debugging info being produced.

Configurable backtracking: we can impose a limit on the
number of backjumps performed — the old solver never
backtracks.

®Well-Typed

Reflections on the implementation

» The approach is reasonably easy to work with in practice,
because we can split the algorithm into multiple
independent steps.

» We haven’t made any effort on clever optimizations, and
the new solver has about the same speed in practice as
the old one ...

» However, while laziness is the key to modularity here, there
are also very subtle laziness constraints that aren’t
expressible in the type system.

®Well-Typed

Encapsulations

Encapsulations

The assumption to allow only one instance of a package per
application is too conservative:
» The problem arises from exported types that aren’t
compatible between instances.
» Some libraries are mostly used privately or don’t export
any types.
» If we could declare such private dependencies, we might
get better results.

®Well-Typed

Encapsulations

The assumption to allow only one instance of a package per
application is too conservative:
» The problem arises from exported types that aren’t
compatible between instances.
» Some libraries are mostly used privately or don’t export
any types.
» If we could declare such private dependencies, we might
get better results.

Idea

We allow a package A to declare that it encapsulates package
B. Ideally, it should be checked that A’s interface contains no
traces of B.

®Well-Typed

Encapsulations

The assumption to allow only one instance of a package per
application is too conservative:
» The problem arises from exported types that aren’t
compatible between instances.
» Some libraries are mostly used privately or don’t export
any types.
» If we could declare such private dependencies, we might
get better results.

Idea

We allow a package A to declare that it encapsulates package
B. Ideally, it should be checked that A’s interface contains no
traces of B.

However, encapsulations are subtle . ..

®Well-Typed

Encapsulation example

Different instances can be chosen for B and C.B.

®Well-Typed

Encapsulation example

The encapsulation is invalidated by other dependencies. Both B
and C.B must be the same instance.

®Well-Typed

The plan for encapsulations

» The solver is prepared for scoped goals.

» Scoped goals are introduced when packages declare
encapsulations.

» Scoped goals can be invalidated by other dependencies
(i.e., forced to be equal to original goals).

» Scoped goals should therefore be resolved as late as
possible, to prevent unnecessary backtracking.

» Even if scoped goals can be resolved differently, the
preference should still be to select a single instance per
package.

» The install plan checker has to be generalized.

» The Cabal library needs to be extended to check private
dependencies.

®Well-Typed

Error messages
Ideas

» Add as much information internally as possible, i.e., keep
reasons for all decisions.

» Make traces, while being verbose, fully understandable.

» Error messages are excerpts of the full trace, removing
irrelevant parts.

®Well-Typed

Error messages
Ideas

» Add as much information internally as possible, i.e., keep
reasons for all decisions.

» Make traces, while being verbose, fully understandable.

» Error messages are excerpts of the full trace, removing
irrelevant parts.

Current status

» All the information is there.
» Could be presented in a better/cleaner way.
» There are some choices on how to produce excerpts.

®Well-Typed

Demo

Future work

v

Turn cabal-install into a proper library.

Factor out the solver into a separate package.

Others can write their own solvers.

Integrate cabal-dev, or make such tools use the library.

v

v

v

v

Track external dependencies.

v

Allow more configuration options.

®Well-Typed

Please try it

We appreciate early feedback:

darcs get \
http://darcs.haskell.org/cabal-branches/cabal-modular-solver

cd cabal-modular-solver

cabal install ./cabal ./cabal-install

®Well-Typed

