
The Rodin Modular Language vers. 21 aug 2009 – User Manual and Report

Dan POPA, Univ. Lecturer , PhD-C,
Department of Mathematics and Computer Science
University of Bacău, Romania, danvpopa@ub.ro

Abstract: The scope of this paper is to provide news concerning The Rodin Project
(http://www.haskell.org/haskellwiki/Rodin) – a national specific modular didactic language
actually used as a helping tool in teaching base of computer science in high school and
universities. The problem of producing enough programmers is actual and is a necessary step in
order to assure the future development of the IT industry, services and software infrastructure.
Rodin is dedicated to the teaching of C-like language's concepts, a wide used set of languages. The
Rodin Language is specific designed to cross the language barrier which appears when students
without knoledge of English Language are supposed to quickly learn structured programming. The
Rodin Language was release in aug. 2008. Teachers and students are encoureged and invited to
contribute in order to build a corpus of Rodin Programs, based on the model of Free Software
Groups. The sources written using Rodin are actually available free of charges from it's website
[5]. Rodin is used by The Faculty of Mathematics of Bacău University and also by some high scools
from Bacău and Iaşi area. The papers contains information concerning several aspects of the
project, visible at users level: syntax, examples, differences, notes, how to's .

This community project dedicated to teachers – The Rodin Language - is presented below.
Keywords: open source; community; Rodin, C-like languages, structured programming.

1. Why can programs written using Rodin be classified as an open source initiative

– the free distribution of such programms via website [5], everybody being encouraged to use
Rodin and produce good quality teching materials based on it. The Rodin licence is not
published yet, but, till this version, Rodin is covered in fact by a sort of BSD licence.

– the source of the Rodin programs are distribuited. Rodin being actually implemented as an
interpreter like in [1], it runs sources directly and supports and encourage the study of the
sources by reprinting them – on screen – as part of the runing process.

– there are no limitations for derived works, till now, excepting the obligation of mentioning
the Rodin webpage and author and also the author of the previous works. Other legal
obligations applies too if any.

– every teacher, student, may benefit of the actally published versions of Rodin programs and
the released sources.

– By it's design The Rodin Language is made for teaching computer sciens, but we don't
forbid any other utilisations of it. If next versions will be good for example for game design
or for applications – well – why not ?

– Rodin did not have a specific IDE now and various editors and IDE can be used: Total Edit,
Ultra Edit etc. Therefore we did not forbid the integration of the Rodin Interpreter itself and
the Rodin Programs with or in any other tools.

– Version of Rodin was build on various platforms: Linux, Wine, Windows (tm). So there is
no restriction concerning the O.S. Nobody requested Mac OS versions of Rodin but we are
ready to produce a Rodin 4 Mac if needed.

– Rodin is build as a modular interpreter in Haskell [2], [3] – also a free software project. If
anybody wants to rebuild Rodin using old technologies like TPLex and TPYacc for example,
it is not forbidden, but such person is warned that modularity will be lost, probably gaining

http://www.haskell.org/haskellwiki/Rodin

speed instead of it. Because we intend to develop Rodin by adding language modules we are
not recommanding to rebuild Rodin on other technologies, but it is not forbidden.

– Rodin syntactic specification can also can be used instead Tiger or While language in The
Compiler Construction Course. But, being of the level of the third academic year, it's higly
improbable that students did not understand English.

– Rodin module's structure will – probably - be available for those Haskell programmers
interested in building language plugins. It's not the case yet. The theories are also published
in the Haskell Community [3], also a Open Source Free Software – BSD Style –
Community.

2. The Rodin Teacher's Community

– Actually there exist one point where interested teachers may go in order to find Rodin
resources: Programs, Teaching Examples/Samples, Syntax specification, News, Advices etc.
It is the Rodin Website. Http://www.haskell.org/haskellwiki/Rodin [5] Separated pages are
made for: News, Downloads, Questios, Programs etc. The infrastructure is in fact a wiki but
the acces is possible only with password, the same provided for [3].

– Teachers are encoureged to built their own sets of Demo Programs in Rodin in order to show
the concepts of Structured Programming to their students. We, at Bacau University, have
also developed some chapters of course for the future teachers in Mathematics and basics of
Comp. Sci. as part of a Course called : Funadmentals of Programming Languages. Rodin
was used during the academic year 2008-2009 and was wellcomed by our students. Such
students are and will be the first generations of members of the community.

– As bookwriter I had the idea of placing some of manuals of mine under free licences as
Open Documents, in order to be free in using it. They will help us in producing Rodin
Language Manuals.

– The starter kit of Rodin consist in a binary interpreter and open/public sources of some
programs, showing the main Structured Programming Concepts in Romanian. Students and
even kids are able to read such sources, without any knoledge of English. A program like:
{ citeste x; scrie x } will be easy understand by a native as { read x; write x} without
problems. The starter kit is provided as an archive containing the Rodin Language
Interpreter and some directories with sources.

– Help is provided via Pidgin (an other Open Source Project) using the Yahoo Mail accounts
of the users from the community. We even give advices by phone, for the sistem
administrators interested in installing Rodin in School's Laboratories.

This set of aspects are supposiong to give you a basic idea concerning the Rodin Teachers's
Community.

3. The Rodin Language itself, characteristics of the version 21/08/2009:

Being considered a teaching tool, this version hav some distinctive characteristics:
– it is a small version, intended for beginners, no vectors or records included in this specific

version (if neded, use Rodin2009a-e versions, but with caution.)
– during the summer of 2009 the main source of Rodin itself was "sliced" in modules, as part

of a research work, also, in order to help the development and the revison. The built of a
modular language itself is actually an open research area, but it will be subject of a technical
paper.

– a difference: the sintax of sequences was chenged, being now closed to a mixture of Pascal
and C. A sequence did not requiered the semicollon after the last statement. The begin and
the end are marked with { } as C-like languages does.

http://www.haskell.org/haskellwiki/Rodin

– every modul of the parser was triple checked. Teachers can count on a better parser and clear
error messages.

– the operators: >=, <=, ==, != are included. Also : ! - the negation, && (SI), || (SAU)
– the "text" command was improved: Special characters like: + - _ () . , ? ! : = helps user in

order to formulate clear messages. Also the @ sign was included in text's specification. The
user can program meesages containing e-mail addresses.

– better eror messages, missing keywords are know corectly and completly anounced
– C-like logic: 0 meaning False and other integers meaning true.
– the "let" statement called "fie" remains in place but it's restricted to simple identifiers – on

the left side.
– the name of the running program is also sent to the console output.
– if really needed, the sequences of statements may be separated by « , » too, not only by

semicollon.
– commands and expressions are know separated syntactic categories
– vectors, indexed variables
– the "let" statement called "fie" where the left side is an indexed variable
– the "for" statement called "pentru" has a slight different syntax:

pentru (<com> ; <exp>; <com>)
<com>

Removed characteristics: Don't count yet again on concepts like:
– records – was not implemented at all, in any version
– files – also not implemented
– anonymous 1-parameter functions expresed as abstractions
– the apply invisible/unwritten operator
– the vide sequence {}
– real numbers

4. The Rodin Language itself, syntax of the version 21/08/2009, codename:ExperimentExp11

4.1 The I/O operations are,yet, console based. There exists a sort of "read" called "citeste", a sort
of "write" called "scrie", and also a sort of "writeStr" called "text". Examples:

citeste x

scrie y

text "dati valoarea lui x:"

The strings mai contain letters , digits and some extra characters, very helpfull in order to make
simple sentences: ! ? , . = @ _ - or to speak about e-mail adresses.

4.2 Assignments: Values are assigned to variables using a "let" statement as in Basic. It's syntax
is : let <var> = <exp> where the expression may contains any kind of operators: +, -, * , /, > , < ,
>=, <=, !=, ==, ! .

 fie x=1;
 fie y=x+1;
 fie z=(x+1)*(y+2);
 fie logic=(z<=10);

 fie negat=! (z<0);

Nota: && si OR nu sunt implementati in aceasta versiune.

4.3. The "begin... end" block statement is replaced by "{ }", where single statements can
pe separated using ";" and also "," (not recommanded but also possible).

{citeste x;
 scrie x }

Notati:Nu este permis spatiul de dupa "cand".

{text "dati valoarea lui x:";
 citeste x;
 scrie x }

Notati:Nu este permis spatiul de dupa "cand".

Some programs using the translated version of the "begin ... end" sequence, inspired by C-like
languages..

4.4. The "if" "then" "else" becomes "daca" "atunci" "altfel". A simplified version: The "if" "then"
becomed "daca" "atunci" and it also usable.

{ daca (1==1) atunci scrie 10 altfel scrie 0 }

-- daca1.txt
-- Comparatii: egalitatea scrisa cu 2 de egal

{ citeste x;
 citeste y;
 daca (x==y) atunci scrie 10 altfel scrie 0 }

-- daca2.txt
Se pot compara si variabilele, si expresiile...
Orice expresie intreaga poate fi conditie.

{ citeste x;
 citeste y;
 daca (y!=0) atunci scrie x/y altfel scrie 0 }

-- daca3.txt
Comparatia "diferit" scrisa in stil C.
Impartirea intreaga /.
Se pot compara si variabilele, si expresiile...
Orice expresie intreaga poate fi conditie.

{text "Dati urmatorul y ";
citeste y;
text "Dati urmatorul xm ";
citeste xm;
executa {
 {daca (y>xm)
 atunci fie xm=y };

atat cat (y!=0);
}

{text "Start program: dati x, ENTER, y si ENTER";
 citeste x;
 citeste y;
 daca (x>y) atunci text "x mai mare ca y"
 altfel text "x mai mic sau egal cu y";
 text " apasa 0 si Enter";
 citeste z
 }

Modular Language written by Dan V Popa, Ro/Haskell Group.
8/aug/2009 - Rodin - Codename:ExperimentExp8
limitare :{ <com> ; <com> ... <com> } fara ; final.

Some Programs using the alternative (i.e. Conditional) statement.

4.5. The "while" keyword is replaced by "cat timp". Spaces are allowed between the two
keywords. The space between the second keyword and the block of statements, theoretically
accepted is not allowed in the actual implementation.

{citeste x;
 cat timp(x>0)
 { fie x = x /2;
 scrie x }
}

Un numar este impartit repetat la 2.
Rodin Modular / 8.08.2009/ ExperimentExp8
Atentie, aceasta versiune de while nu mai are "executa".
Notati:Nu este permis spatiul de dupa "timp".

{ fie x=100;
 cat timp(x>10)
 fie x=x-1;
 scrie x;
 text "Salut!"
}

Nu puneti spatiu dupa "timp".
Nu-l va accepta.
Revizuiti sursele vechi.

{ text "Calculul lui n! pentru n= ...";
 citeste n;
 fie x=1;
 fie nr=1;
 cat timp(nr<n)
 { fie nr=nr+1;
 fie x=x*nr

 };
 scrie x
}

Modular Language written by Dan V Popa, Ro/Haskell Group.
8/aug/2009 - Rodin - Codename:ExperimentExp8
limitare :{ <com> ; <com> ... <com> } fara ; final.
Programul:RodinV08-Factorial-Ro.txt

{ fie y=2;
 fie x=100;
 cat timp(x>10) {
 fie x=x-1;
 scrie x
 };
 scrie y;
 text "Salut!"
}

Numaratoarea descendenta:
Bucla cu test initial cu
mai multe instructiuni in bucla.

{ citeste n;
 fie f1=0;
 fie f2=1;
 scrie f1;
 scrie f2;
 cat timp(f2<n)
 { fie f1p=f2;
 fie f2p=f1+f2;
 fie f1=f1p;
 fie f2=f2p;
 scrie f1
 }
}

-- 7 aug 2009. Fibo.
-- Refacut cu ocazia Exp 07
-- fara spatiu dupa timp(
-- fara ; dupa ultima instructiune

Some Programs using the ro-version of the "while" loop.

4.6. The "do... while ..." statement is replaced by "executa.... atat cat ". Spaces are allowed
between the two keywords. The space between the second keyword and the expression,
theoretically accepted are not allowed in the actual implementation.

{ text " Maximul elementelor unui sir de numere ";
 text "pozitive distincte terminat cu numarul zero. ";
 fie xmax = 0;
 text "dati y ";
 citeste y;

 executa {
 {daca (y>xmax)
 atunci fie xmax=y
 };
 text "dati urmatorul y ";
 citeste y }
 atat cat (y!=0);
 text "maximul este ";
 scrie xmax
}

--Rev 9 aug 2009 pt ExperimentExp8
--Instructiunea
 executa ... atat cat ...
Este echivalentul lui do...while ... din C.
Primul loc: o instructiune (compusa eventual)
Al doilea: conditia

-- Instructiunea daca ... atunci...
fara alternativa:altfel

A Program using the translated version of the "do... while" loop, which is specific for the C-like
languages.

4.7. The "for" keyword is replaced by "pentru". Dual and multiple counters loops are allowed.

{pentru (fie x=1; x<10; fie x=x+1)
 scrie x
}

--Rodin, 8 aug 2009, Exp8

{pentru (
 {fie x=1,fie y=2};
 x*x<100;
 {fie x=x+1,fie y=y*2}
)
 {text "x=";
 scrie x;
 text "y=";
 scrie y;
 text " "}
}

 Modular Language written by Dan V Popa, Ro/Haskell Group.
8/aug/2009 - Rodin - Codename:ExperimentExp8

 Programul:bucladubla.txt.
La instructiunea for este nevoie de acolade la comenzile
c1, c3, c4 din
 for (c1 ; e2 ; c3) c4
Se pot scrie si acele ciudate bucle cu doua contoare.

Some programs using the translated version of the "for" loop.

4.8. The "repeat... until" statement is replaced by "repeta ...pina cand.....".

{citeste x;
 repeta
 { fie x = x /2;
 scrie x }
 pina cand(x==0)
}

Rodin Modular / 8.08.2009/ ExperimentExp8
Notati:Nu este permis spatiul de dupa "cand".

{ text "Calculul divizorului comun";
 text "dati numarul a ";
 citeste a;
 text "dati numarul b ";
 citeste b;
 fie undeimp=a;
 fie unimp=b;
 repeta
 { fie unrest=undeimp%unimp;
 fie undeimp=unimp;
 fie unimp=unrest
 }
 pina cand (unimp==0);
 text "Iata divizorul comun:";
 scrie undeimp
};

Program 4:cmmdc
==================
Modular Language written by Dan V Popa, Ro/Haskell Group.
8/aug/2009 - Rodin - Codename:ExperimentExp8

Some programs using the translated version of the "for" loop.

5. Vectors (no matrix allowed in this version: ExperimentExp11)

Rodin (Codename:ExperimentExp11) is using simple indexed Integer variables. Some things may
be noted:

– there is no need to declare vectors
– but every element should be initialized , for example using the 0 value
– such an indexed variable can be placed as the left part of an assignment, an other kind of

assignment being defined
– vectors may be, somehow, partially defined, for some values of the index the locations

exists, but for other, no. They are usually called rare vectors (similarly with rare matrix)
– vectors being undeclared, the domain of the index is composed by the set of integers
– the values are also integers, no matter how long

– being introduced as a version of factors, embeded in the expresion evaluator, elements of a
vector can be used in every expresion, even compared if needed. As a consequence, such
values of indexed variables may be writen by the usual command.

{fie x[1]=1001;
 scrie x[1]
}

}

Pt Rodin ExperimentExp10
din 12/8/2009

d

Program: vector1.txt
====================

{ citeste y;
 fie x[0]=y;
 fie x[1]=y;
 citeste x[1];
 scrie x[1]
}

}}

Rodin Exp10 12/09/2009

R

Vector2.txt
======================
Nu uitati sa initializati elementele
vectorului inainte de folosire.

{fie x[1]=0;
 citeste x[1]
}

}

Rodin Exp10 12/08/2009

R

Vector3.txt
==
Elementele vectorului trebuie
initializate inainte de a fi folosite,
chiar daca e vorba de o citire.

{text "dati lungimea vectorului:";
 citeste x;
 pentru (fie i=0; i<x ;fie i=i+1)
 {fie v[i]=0;
 citeste v[i];
 text "v[i]=";
 scrie v[i]
 }
}

}}

Rodin Exp10 12/08/2009

�

Vector4.txt
===
Initializarea se poate realiza si din mers.

The examples (Vector1.txt – Vector4.txt) underline how ca vectors be used in Rodin (Experiment 10
and Experiment 11).

6: Running programs using Total Edit on Windows platforms.

The Rodin programs are stored in common texts files and can be edited with any editor supporting
the txt file format. Simply run the Main Rodin Binary from a console or from the menu of the
editor, where can be easily added (Ultra Edit, Total Edit, X Emacs etc...).The name of the program
is given as a single parameter. The same procedure is used on various operating systems: Window,
Linux etc.

In order to use Rodin and Total Edit together, there is a need to define a new command in the Tools
menu.

The user must define a new entry in the Tools Menu, calling it as he wish (eg. Run/Ruleaza
programul). When used, it will start a cmd windows running the main binary of Rodin (Main.exe)
using the current edited file as an imput file.
In this configuration the default directory and the place where Main.exe can be found is a directory
called Rodin, on drive c: .
The user should be carefull to save the files in yhe specified directory.
A shortcut can also be defined, for example CTRL+F9 by pressing the keys.
The cmd program have to be runed from the Dos Prompt or Externaly and the file should be saved
automaticaly in order to reflect the latest changes of it content.

As a result, the user can Run Rodin programs with a CTRL-F9 combination of keystrokes.
The resulting windows have to be closed after the program had run. I.e. It did not close itself

automaticaly.

 Total Edit and Rodin together. The user defined menu helps running Rodin Programs.

7. Running an usual program

Because Rodin inherits it's long arithmetics from it's development language Haskell [2] and the
integers implementation was made via the data declaration [2], Cap 3 , pg 57-66 using Integers (the
type of long integers available in Haskell), Rodin can also manipulate long arithmetics.

Because on space constraints we did not logged a big list of prime numbers below, but they can be
found and stored, using vectors and long arithmetic.

[dan@localhost ExperimentExp11]$./Main Eratostene.txt
Modular Language written by Dan V Popa, Ro/Haskell Group.
21/aug/2009 - Rodin - Codename:ExperimentExp11
Noutate:Operatorii logici SI &&, SAU || sunt implementati.
 Limitare: nu scrieti serii lungi de SAU si nici de SI cum
scrieti la adunare serii lungi de plus: 1+1+1+1+1 ori 1+2+7.
Programul:Eratostene.txt
{ text "Ciurul lui Eratostene";
 fie max=20;
 pentru (fie i=1; i <= max; fie i=i+1)
 fie c[i]= i

 ;
 text "Ciurul este plin de numere";
 fie nrcrt=2;
 repeta {
 text "Sterg multiplii numarului;";
 scrie nrcrt;
 pentru (fie j=nrcrt; j <= max ; fie j = j + nrcrt)
 fie c[j]=0
 ;
 text "Au trecut prin sita.";
 text "trec la numarul urmator";
 repeta
 fie nrcrt=nrcrt+1
 pina cand (c[nrcrt] != 0 SAU nrcrt == 101);
 scrie nrcrt
 }
 pina cand (nrcrt >= max);
 text "Am terminat de trecut prin sita numerele";
 pentru (fie p=2; p <= max; fie p=p+1)
 { scrie p;
 text " , "
 }
}

}

"Ciurul lui Eratostene"
"Ciurul este plin de numere"
"Sterg multiplii numarului;"
2
"Au trecut prin sita."
"trec la numarul urmator"
3
"Sterg multiplii numarului;"
3
"Au trecut prin sita."
"trec la numarul urmator"
5
"Sterg multiplii numarului;"
5
"Au trecut prin sita."
"trec la numarul urmator"
7
"Sterg multiplii numarului;"
7
"Au trecut prin sita."
"trec la numarul urmator"
11
"Sterg multiplii numarului;"
11
"Au trecut prin sita."
"trec la numarul urmator"
13
"Sterg multiplii numarului;"

13
"Au trecut prin sita."
"trec la numarul urmator"
17
"Sterg multiplii numarului;"
17
"Au trecut prin sita."
"trec la numarul urmator"
19
"Sterg multiplii numarului;"
19
"Au trecut prin sita."
"trec la numarul urmator"

"

Programul a rulat !
Modular Language written by Dan V Popa, Ro/Haskell Group.
http://www.haskell.org/haskellwiki/Rodin
21/aug/2009 - - Codename:ExperimentExp11

8. Conclusions

This article is dedicated to The Rodin Community, a community of teachers dedicated to make C-
like languages affordable by Romanian Students. The article focuses on the latest stage of
development of the Rodin Langage, which had been revised during this summer of 2009. The Rodin
version of the moment (after one year from it's first release in 2008) is a bit different – being
modulalrly sliced and verified module by module – and then rebuild on different platforms.

Nowadys, Rodin ExperimentExp11, the latest version of the moment is available for various
platforms: Windows, Linux- 386, Linux-X86-64.

The main theoretic aspects of Rodin as those presented on Anglo Haskell 2008 web page from [3]
by myself will be subject of an other paper or on other book like [1].

9. References

[1] – Dan Popa, Practica Interpretarii Monadice, MatrixRom, Bucuresti, 2008,
ISBN 978-973-755-417-8
[2] - Dan Popa, Introducere in Haskell 98 prin exemple , Edusoft , Bacau, 2007,
ISBN 978-973-8934-48-1
[3] - The Haskell Org Community – www.haskell.org
[4] - The Ro/Haskell Community – www.haskell.org/haskellwiki/Ro/Haskell
[5] - The Rodin Community – www.haskell.org/haskellwiki/Rodin
[6] - Pidgin – http://www.pidgin.im

Authors’ details: Dan Popa is University Lecture at Mathematics and Computer
Science Department from Faculty of Sciences of the University of Bacau. He is a
PhD candidate from December 2001 at Informatics Department from "Al.I.Cuza"
University, Iasi. His main research areas related to this paper are: modular monadic
parsing and modular monadic semantics. He is the Founder of the Ro/Haskell

Community [4] and originator of The Rodin Project [5]. He is also HCAR corespondent for
Romania, too.

