
[Faculty of Science
Information and Computing Sciences]

1

Snaplets: composable and reusable web
components

9th Ghent Functional Programming Group meeting

Jurriën Stutterheim

October 4, 2011

[Faculty of Science
Information and Computing Sciences]

2

Mainstream web development

I Dynamically typed languages (PHP, Ruby, Python)
I Very low entry barrier
I Many free/open source frameworks available

I Statically typed languages (Java, C#)
I Mostly used by companies

[Faculty of Science
Information and Computing Sciences]

3

What about Haskell?

I Not used for web apps a lot (yet!)
I Steep learning curve compared to PHP et al.
I Few frameworks available (but a lot of very specialised

packages)
I Frameworks are not as feature-rich as their PHP (et al.)

counterparts (yet!)
I Makes a great web language

I Type-safe
I Fast
I Web-model fits Haskell nicely

I Parse text, manipulate data, pretty-print
I As opposed to being confined in IO by (possibly many)

application windows

[Faculty of Science
Information and Computing Sciences]

4

Haskell web frameworks

Major Haskell web frameworks:

I Snap Framework
I Yesod
I Happstack

[Faculty of Science
Information and Computing Sciences]

5

Snap Framework

Client Snap Domain

Request

Response

Handle

Result

[Faculty of Science
Information and Computing Sciences]

6

Today: snaplets

I The upcoming Snap 0.6 release introduces snaplets
I Improve reusability by creating composable components
I Today we will see two kinds of snaplet:

I Guestbook application snaplet
I Reusable HDBC snaplet

[Faculty of Science
Information and Computing Sciences]

7

What are snaplets?

I An application is a snaplet, snaplets can be applications
I Can also be a reusable component

I Sessions, database connections, athentication, etc.
I Self-contained

I Can have handlers to handle requests
I Can have local templates/CSS/JS, routes, state, etc.

I Can be nested in other snaplets (and hence applications)

[Faculty of Science
Information and Computing Sciences]

8

Example snaplet configuration

MyApp

AuthSession HDBC

[Faculty of Science
Information and Computing Sciences]

9

Top-level snaplet initialization

guestbook :: SnapletInit App App
guestbook = makeSnaplet "guestbook"
"An example guestbook application."
Nothing $ do
. . .

I Initializer is the snaplet’s entry point
I Configure snaplet name and paths
I Setup routes, sub-snaplets, etc.
I Start/finalise snaplet-wide sessions, connections, etc.

[Faculty of Science
Information and Computing Sciences]

10

SnapletInit type

guestbook :: SnapletInit App App

newtype SnapletInit b v = . . .

I b is the state type of the top-most snaplet (usually left
variable in reusable snaplets).

I b can also be the current snaplet state type, if it is the
top-most snaplet (i.e. your application)

I v is the state type of the current snaplet.

[Faculty of Science
Information and Computing Sciences]

11

SnapletInit type (contd.)

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype SnapletInit b v =
SnapletInit (Initializer b v (Snaplet v))

newtype Initializer b v a = . . .
deriving (MonadIO, . . .)

[Faculty of Science
Information and Computing Sciences]

12

Application state

State type for our example top-level application snaplet:

data App = App
{_dbConn :: Snaplet (HdbcSnaplet Connection)
, _session :: Snaplet SessionManager
, _auth :: Snaplet (AuthManager App)
, . . . }

makeLens ” App

Lenses (an abstraction of accessor and mutator functions) are
generated, which have the same name as the records, minus the
underscore. They are used to get access to subsnaplet functions.

[Faculty of Science
Information and Computing Sciences]

13

Using lenses

session :: Lens App (Snaplet SessionManager)

A lens can be seen as a pair of two functions:

(App→ Snaplet SessionManager
, Snaplet SessionManager → App→ App)

With this we can use the setInSession function from the
SessionManager snaplet using with:

with session $ setInSession "login-failed" "1"

[Faculty of Science
Information and Computing Sciences]

14

Configuring our snaplet: routing

Things like routing, connections etc. are set up in the initializer.

A snaplet is responsible for routing requests to the appropriate
handler

guestbook :: SnapletInit App App
guestbook = . . . do
addRoutes [("/", ifTop indexHandler)

, ("/delete/:id", deleteHandler)
, . . .]

. . .

[Faculty of Science
Information and Computing Sciences]

15

(App)Handler

indexHandler ::AppHandler ()

type AppHandler a = Handler App App a

newtype Handler b v a = . . .
deriving (MonadIO,MonadSnap, . . .)

I b and v serve the same purpose as in SnapletInit
I a is the handler return type (which is often ())

[Faculty of Science
Information and Computing Sciences]

16

Example index handler

Guestbook messages are retrieved with getMessages, which
uses the HDBC snaplet.

indexHandler ::AppHandler ()
indexHandler = do
msgs← getMessages
blaze $ renderIndex msgs

getMessages ::HasHdbc m c⇒ m [Message]

renderIndex :: [Message]→ Html

blaze ::MonadSnap m⇒ Html→ m ()

MonadSnap can be used to access the request and response

[Faculty of Science
Information and Computing Sciences]

17

Reading the messages

getMessages ::HasHdbc m c⇒ m [Message]

The HDBC snaplet defines HasHdbc

class (IConnection c,MonadIO m)⇒
HasHdbc m c | m→ c where
getHdbc ::m c

[Faculty of Science
Information and Computing Sciences]

18

HDBC snaplet state

The HDBC snaplet also has a state. We use it to store an
HDBC connection:

data HdbcSnaplet = IConnection c⇒ HdbcSnaplet {
hdbcConn :: c}

which we can obtain from our application using the HasHdbc
typeclass and the dbConn lens

instance HasHdbc AppHandler Connection where
-- getHdbc :: AppHandler Connection
getHdbc = with dbConn $ gets hdbcConn

Note: this is exactly the type of our handlers!

[Faculty of Science
Information and Computing Sciences]

19

Initializing the HDBC snaplet

Reusable snaplet initialization is almost the same as application
snaplet initialization

hdbcInit :: IConnection c⇒ c
→ SnapletInit b (HdbcSnaplet c)

hdbcInit conn = makeSnaplet "hdbc"
"HDBC abstraction" Nothing $ do
onUnload $ HDBC.disconnect conn
return $ HdbcSnaplet conn

[Faculty of Science
Information and Computing Sciences]

20

Wrap HDBC functions

We can now wrap HDBC functions to eliminate the need for
passing the connection explicitly

withHdbc ::HasHdbc m c⇒ (c→ IO a)→ m a
withHdbc f = do
conn← getHdbc
liftIO $ f conn

getTables ::HasHdbc m c⇒ m [String]
getTables = withHdbc HDBC.getTables

Original getTables type:

getTables :: IConnection c⇒ c→ IO [String]

[Faculty of Science
Information and Computing Sciences]

21

Snaplet convenience function

The HDBC snaplet offers some convenience functions

query :: HasHdbc m c⇒ String → [SqlV alue]
→ m Integer

query sql bind = withTransaction $λconn→ do
stmt← HDBC.prepare conn sql
liftIO $ HDBC.execute stmt bind

[Faculty of Science
Information and Computing Sciences]

22

Initializing the HDBC snaplet

We connect to SQLite and pass the connection to the HDBC
snaplet

guestbook :: SnapletInit App App
guestbook = . . . do
. . .
conn← liftIO $ connectSqlite3

"resources/guestbook.db"
hdbc ← nestSnaplet "hdbc" dbConn $

hdbcInit conn
. . .
return $ App hdbc . . .

[Faculty of Science
Information and Computing Sciences]

23

Inserting DB rows

We can now use the HDBC snaplet in our application

indexHandler ::AppHandler ()
indexHandler = do
. . .
← addMessage someMessage

. . .

addMessage ::HasHdbc m c⇒Message→ m Integer
addMessage (Message title body author) = query
("INSERT INTO messages (title, body, author)"
++ " VALUES (?, ?, ?)")

[toSql title, toSql body, toSql author]

[Faculty of Science
Information and Computing Sciences]

24

Serving the application

guestbook :: SnapletInit App App

main :: IO ()
main = serveSnaplet defaultConfig guestbook

[Faculty of Science
Information and Computing Sciences]

25

Concluding

I Snaplets offer a powerful way to think about and build web
applications and reusable components

I Currently there are not many 3rd party snaplets available
I Now you can write your own, so start hacking! ;)
I Code used in these slides is available on GitHub

I https://github.com/norm2782/snap-guestbook
I https://github.com/norm2782/snaplet-hdbc

I Check out the snap 0.6 branch (currently unstable!)
I https://github.com/snapframework/snap/tree/0.6

