
AN ASSEMBLER IN A NUTSHELL

Dan Popa
Univ. of Bacău , Spiru Haret nr. 8, Bacău, România

popavdan@yahoo.com

Abstract: This document is focused on the category theory and the new revised version of the Haskell 98 language,
illustrating how can both be used in order to quickly prototyping language processors. As a proof, the reader is invited
to see how a functor is becoming an assembler of a simple language. This simultaneously illustrates the power of both
tools, The Category Theory and the functional language Haskell itself. The resulted assembler is universal and
adaptable. We can easily modify the morphism which produce the machine code without being necessary to modify
anything else. The functor will transform the new morphism in a new assembler in an instant. As an example, an other
assembler, inspired by the well known book “Compilers and Compiler Generators” was built in less than an hour. A
conclusion concerning such tools and their necessity is drawn .

1. Introduction

The facts: Pushed by the new rules came from Europe,
roumanian universities are attempting to drop or even
to consider as optional some sets of courses. For
examples, the University of Bacău is ready to consider
Graph Theory and Compiler Constructions as optional
courses. Such Theories are forced to leave their places
and become replaced by double semesters courses as
Data Bases or even Programming Languages courses
(where Word and Excel are studied by engineers).
Other Universities (like Iasi) had similar customs,
sometimes ejecting the Category Theory Course or
misplacing it before the Compiler Construction Course.
This custom made the students unable to see how
powerful mathematical theories are able to solve the
problems of the computer scientists. Such a problem,
how to quickly build an adaptable assembler is treating,
as an example, in the following paragraphs.

2. Basics

Some basic definitions are included.
A fine definition of category may be find in [1]:
A category C consists of two collections, Ob(C),
whose elements are the objects of C , and Ar(C), the
arrows (or morphisms or maps) of C . To each arrow is
assigned a pair of objects, called the source (or domain)
and the target (or codomain) of the arrow. The notation
f : A →B means that f as an arrow with source A and
target B. If f : A →B and g : B →C are two arrows,
there is an arrow g ○ f : A → C called the composite of
g and f. The composite is not defined otherwise. We
often write g f instead of g○f when there is no danger of
confusion.For each object A there is an arrow idA (often
written 1A or just 1, depending on the context), called
the identity of A, whose source and target are both A.
These data are subject to the following axioms:
1. For f : A →B,

f ○ idA = idB ○ f = f;
2. For f : A → B, g:B → C, h : C →D,

h ○ (g ○ f) = (h ○ g) ○ f

A category consists of two “collections”, the one of sets
and the one of arrows.
In the same book [2] (paragraph 1.2. pp.11) the
definition of the functor was given as you see below:
Like every other kind of mathematical structured
object, categories come equipped with a notion of
morphism. It is natural to define a morphism of
categories to be a map which takes objects to objects,
arrows to arrows, and preserves source, target,
identities and composition.
If C and D are categories, a functor F : C → D is a map
for which
1. If f : A → B is an arrow of C , then

 Ff : FA → FB is an arrow of D;
2. F(idA) = idFA; and
3. If g : B → C, then F(g ○ f) = Fg ○ Ff.

3. An example

A well known example, which can be found in many
textbooks is quoted by Andrea Schalk in [3]:

Example 3.1 Let M: Set → Set be the functor that
maps a set A to all the words that can be formed over
the alphabet A, and whose action on morphisms is
described as follows.

For f : A → B in Set let Mf : MA → MB be given by

Mf(a1 • .. • an) = f(a1) • .. • f(an)

This functor will be used as a sort of adaptable
assembler generator in the followings examples. The
program will be written in Haskell 98, the recently
(2003) revised version of Haskell.

4. History of Haskell 98

Due to the fact that the history of Haskell is best
described using the words of the authors we were
decided to include the following

text which is quoted from the published version of the
Haskell 98 Report and was reproduced in [4]:
<< In September of 1987 a meeting was held at the
conference on Functional Programming Languages and
Computer Architecture (FPCA '87) in Portland,
Oregon, to discuss an unfortunate situation in the
functional programming community: there had come
into being more than a dozen nonstrict, purely
functional programming languages, all similar in
expressive power and semantic underpinnings. There
was a strong consensus at this meeting that more
widespread use of this class of functional languages
was
being hampered by the lack of a common language. It
was decided that a committee should be formed to
design such a language, providing faster
communication of new ideas, a stable foundation for
real applications development, and a vehicle through
which others would be encouraged to use functional
languages. This document describes the result of that
committee's efforts: a purely functional programming
language called Haskell, named after the logician
Haskell B. Curry whose work provides the logical basis
for much of ours.
The committee's primary goal was to design a language
that satisfied these constraints:
1. It should be suitable for teaching, research, and
applications, including building large systems.
2. It should be completely described via the publication
of a formal syntax and semantics.
3. It should be freely available. Anyone should be
permitted to implement the language and distribute it to
whomever they please.
4. It should be based on ideas that enjoy a wide
consensus.
5. It should reduce unnecessary diversity in functional
programming languages.
The committee intended that Haskell would serve as a
basis for future research in language design, and hoped
that extensions or variants of the language would
appear, incorporating experimental features.
Haskell has indeed evolved continuously since its
original publication. By the middle of 1997, there had
been four iterations of the language design (the latest at
that point being Haskell 1.4). At the 1997 Haskell
Workshop in Amsterdam, it was decided that a stable
variant of Haskell was needed; this stable language (is
the subject of the Report), and is called Haskell
98. Haskell 98 was conceived as a relatively minor
tidy-up of Haskell 1.4, making some simplifications,
and removing some pitfalls for the unwary.
It is intended to be a “stable” language in sense the
implementors are committed to supporting Haskell 98
exactly as specified, for the foreseeable future.
The original Haskell Report covered only the language,
together with a standard library called the Prelude. By
the time Haskell 98 was stabilized, it had become clear
that many programs need access to a larger set of
library functions (notably concerning input/output and
simple interaction with the operating system). If these
program were to be portable, a set of libraries would

have to be standardized too. A separate effort was
therefore begun by a distinct (but overlapping)
committee to fix the Haskell 98 Libraries. >>

5. How to write an assembler in 8 lines of code

As a first example, a small assembler for a tiny
language composed by only two keywords NOP and
RET can be immediately written .

data Instr = Nop | Ret
-- Arrow
f :: Instr -> [Int]
f Nop = [0]
f Ret = [201]
f _ = []
-- Functor
m :: (Instr -> [Int]) -> [Instr] -> [Int]
m f [] = []
m f (a1:l) = f a1 ++ m f l
-- Assambler
assemble :: [Instr] -> [Int]
assemble x = m f x

Remark: Any element of the Instr datatype may,
theoretically produce a list of machine codes. In
Haskell, there is a tradition of considering strings as
lists.

6. Testing the assembler

The Mandrake 8.2 Linux and the well known
interpreter Hugs 98 was used to test the previous
program. The results may be seen here:

8. Adapting the assembler

The next goal was to adapt the previous assembler to a
new language having a more complex instruction set.
The language is described in the Chap. 4 of [5].

9. The new program

-- Dan Popa 22.iunie.2005
-- Instructions -- Instructiunile de asamblat
data Instr =NOP | CLA | CLC | CLX | CMC | INC | DEC |
 INX | DEX | TAX | INI | INH | INB | INA |
 OTI | OTC | OTH | OTB | OTA | PSH | POP |
 SHL | SHR | RET | HLT |
 LDA Int | LDX Int | LDI Int | LSP Int | LSI Int |
 STA Int | STX Int | ADD Int | ADX Int | ADI Int |
 ADC Int | ACX Int | ACI Int | SUB Int | SBX Int |
 SBI Int | SBC Int | SCX Int | SCI Int | CMP Int |
 CPX Int | CPI Int | ANA Int | ANX Int | ANI Int |
 ORA Int | ORX Int | ORI Int | BRN Int | BZE Int |
 BNZ Int | BPZ Int | BNG Int | BCC Int | BCS Int |
 JSR Int
-- Arrow f -- Morfismul de asamblare a fiecarei instructiuni
-- The semantics -- el ne da semantica de generare a codului
f :: Instr -> [Int]
f NOP = [00]
f CLA = [01]
f CLC = [02]
f CLX = [03]
f CMC = [04]
f INC = [05]
f DEC = [06]
f INX = [07]
f DEX = [08]
f TAX = [09]
f INI = [10]
f INH = [11]
f INB = [12]
f INA = [13]
f OTI = [14]
f OTC = [15]
f OTH = [16]
f OTB = [17]
f OTA = [18]
f PSH = [19]
f POP = [20]
f SHL = [21]
f SHR = [22]
f RET = [23]
f HLT = [24]
-- Double byte instr.
f (LDA b) = [25 , b]
f (LDX b) = [26 , b]
f (LDI b) = [27 , b]
f (LSP b) = [28 , b]
f (LSI b) = [29 , b]
f (STA b) = [30 , b]
f (STX b) = [31 , b]
f (ADD b) = [32 , b]
f (ADX b) = [33 , b]
f (ADI b) = [34 , b]
f (ADC b) = [35 , b]
f (ACX b) = [36 , b]
f (ACI b) = [37 , b]
f (SUB b) = [38 , b]
f (SBX b) = [39 , b]
f (SBI b) = [40 , b]
f (SBC b) = [41 , b]
f (SCX b) = [42 , b]
f (SCI b) = [43 , b]
f (CMP b) = [44 , b]
f (CPX b) = [45 , b]
f (CPI b) = [46 , b]
f (ANA b) = [47 , b]
f (ANX b) = [48 , b]

f (ANI b) = [49 , b]
f (ORA b) = [50 , b]
f (ORX b) = [51 , b]
f (ORI b) = [52 , b]
f (BRN b) = [53 , b]
f (BZE b) = [54 , b]
f (BNZ b) = [55 , b]
f (BPZ b) = [56 , b]
f (BNG b) = [57 , b]
f (BCC b) = [58 , b]
f (BCS b) = [59 , b]
f (JSR b) = [60 , b]
f _ = []
-- Functorul M -- functor -- l inseamna a2...an
m :: (Instr -> [Int]) -> [Instr] -> [Int]
m f [] = []
m f (a1:l) = f a1 ++ m f l

-- Asamblorul final rezultat din m si f
-- The final assembler
assemble :: [Instr] -> [Int]
assemble x = m f x

As you can see, all we had to do was to write the new
mnemonics and the new lists of machine codes. That's
all. The implementation functor (and consequently, of
the assembler itself) remains unchanged.

10. Testing the new assembler

In order to test the new assembler the source from
example 4.3 (from the same book) was used, because of
the presence of the assembled code in the previous
example of the same chapter.:

INI
SHR
BCC 13
STA 19
LDA 20
INC
STA 20
LDA 19
BNZ 1
LDA 20
OTI
HLT

The source above should be translated in the following
sequence of decimal numbers:

10 22 58 13 30 19 25 20 5 30 20 25 19 55 1 25
20 14 24

And the translation succeeds.

6. References

[1-2] Barr Michael, Wells Charles, Toposes, Triples
and Theories, McGill University, 2002, pg.1-11
[3] Schalk Andrea, Some notes on monads
Department of Computer Science, University of
Manchester, March, 12, 2002 (www resource)
[4] Hal Daume, Yet Another Haskell Tutorial Copyright
(c) Hal Daume III, 2002-2004.

 http://www.isi.edu/~hdaume/htut/
[5] Terry, P.D, Compilers and Compiler Generators (c)
P.D. Terry, 2000

