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Editorial

by Wouter Swierstra 〈wss@cs.nott.ac.uk〉

I’m happy to announce this year’s Summer of Code Special. Three Summer-
of-Coders sponsored by haskell.org wrote an article about their projects: Max
Bolingbroke gives a tour of GHC’s new plugin support; Roman Cheplyaka de-
scribes the implementation of a physics engine using Data Parallel Haskell; and
Neil Mitchell discusses the past, present and future of Hoogle.

As an editor, it is my responsibility to say a few words about the other projects.
Despite my best efforts last year, there were four Summer-of-Coders that didn’t
write an article for this issue. To make this editorial somewhat more interesting for
you to read and for me to write, here’s a limerick about each of the other projects:

GHC API Improvements
Student: Thomas Schilling

There was once a hacker called Schilling,
Who found the GHC-API unfullfilling,
On #haskell we know
Him as nominolo,
And his code is absolutely thrilling.

A ‘make-like’ dependency framework for Cabal
Student Andrea Vezzosi

As some of you might recall,
Packages were once a pain to install.
But thanks to Duncan Coutts,
And the Haskell grass roots,
We now have the Haskell Cabal.



Language.C, a standalone parser/pretty printer library for C99
Student: Benedict Huber

There’s a package called Language.C,
Which is quite useful you see,
It takes a long String,
and then does its thing,
and returns a C AST.

Efficient maps using generalised tries
Student: James Brandon

This last limerick’s quite hard for me,
If you read on, I’m sure you’ll agree.
I struggle and sigh,
For no matter how I trie,
I just don’t know how to pronounce trie.



Compiler Development Made Easy

by Max Bolingbroke 〈batterseapower@hotmail.com〉

Have you ever wished that you could make Haskell a strict language? Or maybe
you’ve had a great idea for an optimization you could apply to your combinator
library that rewrite rules are just not powerful enough to express? Perhaps you’re
an academic and would love to be able to perform some analysis on the execution of
Haskell code? All these ambitions and more can be realised through a new capability
of the Glasgow Haskell Compiler [1]: compiler plugins.

The how and what of plugins

To understand how we can accomplish all these things, I first need to talk a little
about how GHC compiles Haskell. It is essentially a four step process:

1. Incoming Haskell code is parsed into an abstract syntax tree. This tree
captures the full glory of the Haskell language, and is correspondingly com-
plicated: the main data type used to represent this tree has no less than 44
constructors!

2. The code undergoes some processing by the front end of the compiler. First
the tree undergoes renaming to resolve name scoping, then type checking is
performed, and GHC finishes off with a process known as desugaring. This
desugaring step converts the complicated and large Haskell abstract syntax
tree into the much less scary Core language tree. This will be expounded on
later.

3. The resulting Core code is transformed by a number of Core-to-Core passes.
These are all designed as meaning-preserving transformations that somehow
optimize the code they get as input: for example, there is a pass for con-
structor specialization [2], one for common-subexpression elimination and so
on. The series of Core passes executed here are collectively known as the
middle end or Core-to-Core pipeline of GHC.
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4. The final Core code is consumed by the back end of the compiler, which
deals with generating the actual assembly code that will be run to execute
that program. We won’t have to worry about the magic that goes on here
for the rest of this article.

The compiler plugins feature gives you access to step 3 of this process: you can
have your own Core-to-Core passes dynamically loaded into GHC and installed
somewhere in the Core pipeline. There are certain limitations to choosing this as
the extension point: for example, you would be ill-advised to attempt to generate
huge chunks of new code out of nothing as part of your Core pass (please use
Template Haskell [3] instead), and it is simply impossible to extend the type checker
or the syntax of Haskell. What you can do, broadly, is optimize, analyze and check
this Core representation. This article is going to focus on exploring an optimization
of sorts, but hopefully this will give you an idea of the sheer power afforded you
by these three operations.

A plugged-in Hello World

Let’s write the simplest possible plugin to get a feel for how they work: the full
code is shown in Figure 1. I think you’ll agree that it really couldn’t have been
easier than that! All it contains is a declaration for the value plugin, which is the
special name we must give to the plugin that lives in a module for GHC to pick
it up. I’ve assigned this to the default plugin, which is just a plugin that does
nothing at all.

module SimplePlugin (plugin) where

import GHCPlugins

plugin = defaultPlugin

Figure 1: The simplest possible plugin

Since we’d quite like to have confirmation that something is alive, replace the
plugin declaration with this marginally more interesting one:

plugin = defaultPlugin {
getPasses = putMsgS "Hello, GHC World!" >> return [ ]
}

Right. Let’s see it in action!

6



Max Bolingbroke: Compiler Development Made Easy

$ ghc -c SimplePlugin.hs -package ghc

$ printf "module Main where\nmain = ...

putStrLn \"Hello, Runtime World!\"" > TestProgram.hs

$ ghc TestProgram.hs -plg SimplePlugin -o TestProgram

Loading package ghc-prim ... linking ... done.

... lots of "Loading" ...

Loading package template-haskell ... linking ... done.

Hello, GHC World!

$ ./TestProgram

Hello, Runtime World!

As you can see, I’ve used the new plg GHC flag to tell it to load the
SimplePlugin as part of the build process. This is the only new compiler flag
you should need to worry about if you’re just a consumer of someone else’s plu-
gins, but what we’ve seen so far isn’t going to let you produce a wildly popular
plugin: let’s delve deeper.

Plugins for real: Strict Haskell

Laziness getting you down? Mired in space leaks? Want to give the compiler the
opportunity to unbox your program to the hilt? Then the example plugin we’re
going to develop here is just the thing for you: we’re going to change Haskell’s
evaluation strategy from lazy to strict, all with a simple Core plugin.

Before we go on, let’s talk about what this Core language actually looks like.
The theoretical basis of Core is a typed lambda calculus known as System FC [4].
GHC’s implementation of this System FC as a Haskell data type has just 9 con-
structors, compared to the 44 of fully-fledged Haskell, which means that you as a
compiler plugin author have to handle only a few cases to get the job done.

The full set of data types that make up Core are reproduced in the appendix
(Figure 5), but I’m going to try and give you a gentle introduction to the language
by means of examples.

The harmony of types and values

The first thing you need to know about Core is that it is a typed lambda calculus:
this means, among other things, that it has both the normal “value” lambdas
you are used to in Haskell (which might be written as λ) and the more exotic
“type” lambdas (which are traditionally written as Λ). Type lambdas capture
the notion of parametric polymorphism: wherever you see a forall in the type of
some function, there will assuredly be a type lambda in the corresponding Core
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representation of that function as a value, ready to gobble up the actual type you
want to use that function at.

As a concrete example, consider the identity function. In Haskell, we can write
a rather silly implementation of that as follows:

my id :: a → a
my id = λx → id x

However, as you probably know, Haskell implicitly quantifies over all the free
type variables (such as a) that we may have written in our types. So the above
definition is really the same as this slightly more explicit one:

my id :: forall a.a → a
my id = λx → id x

As we’re still working in Haskell, this code only contains a value lambda: that
which captures the variable x , and a value application: that of x to id . If we take
a look at the Core representation of my id that we obtain after a desugaring step,
we’ll see a different story:

my id = Λ a.λ(x :: a)→ id a x

Figure 2: The Core language representation of our silly identity function

Suddenly, both a type abstraction (for the type variable a) and an application
(of that type variable to the Core representation of id) have sprung up. I’ve also
added an explicit type signature to the binder x to make it clear that, crucially,
the type of x is bound by the type lambda. The outermost type lambda tells
you that in order to use this function you have to first supply a type you wish to
use the function at. Apologies if you feel I’ve belabored the point, but this is the
single biggest conceptual change you need to make to get started with the Core
language from a Haskell programming background.

If you wish to learn more about the remarkable theoretical properties of System
FC and it’s relatives, a place to start would be the Wikipedia page on System F
[5]. System F is a subset of the full System FC we will work with in GHC, but it
turns out that for most Core pass authorship you need only a passing familiarity
with the extensions to F provided by FC, which are designed to give the ability to
deal with GADTs and other type exotica in a principled way.

Returning to the actual Core data types, we might ask how we would represent
the fragment of Core in Figure 2 concretely. The answer comes in two parts: first,
a value of type CoreExpr that represents the definition of the function:

8
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my id rhs = Lam a bndr (Lam x bndr
(App (App (Var id bndr)

(Type (mkTyVarTy a bndr)))
(Var x bndr)))

In this definition, I’ve assumed we have to hand a number of bndr values of
type Id . You can think of the Id datatype as essentially just consisting of a unique
number which is used for comparing Ids, a human-readable name and the type of
the value it binds: it represents the essence of a (type or value) variable.

I’ve also made use of the auxiliary function mkTyVarTy to lift a type variable
(of type Id) into an actual type suitable for application (of type Type). We won’t
concern ourselves with the exact representation of types in this article, so will be
content not to look at the details of what mkTyVarTy is doing.

Although there are really these two types of lambdas floating around, you can
see from the above that there is actually only one Lam and App constructor. This
is because Lam and App are overloaded to mean both type and value application.
If your plugin needs to tell the difference, you need to either inspect whether the
binder is a type or value binder (for Lam) or see if the argument of the application
is a Type (for App).

The second part of our rendering into concrete Core is a value of type CoreBind
which gives that right-hand-side a name (note that a program is just a list of
CoreBinds!). In our case our binding will look something like this:

my id binding = NonRec my id bndr my id rhs

See that use of NonRec? In essence it indicates that my id doesn’t refer to itself
in it’s own right-hand-side, and hence is non-recursive. However, it’s a bit more
than that: the right-hand-side of my id must also not refer to any other value that
mentions my id in it’s right-hand-side, which is the sort of situation that arises
with mutually recursive functions:

isEven 0 = True
isEven (n + 1) = isOdd n

isOdd 0 = False
isOdd (n + 1) = isEven n

The functions in the this mutually-recursive example would have to be repre-
sented in the Core data type as a recursive binding group, like this:

isEven isOdd bindings = Rec [(isEven bndr , isEven rhs),
(isOdd bndr , isOdd rhs)]

isEven rhs , isOdd rhs :: CoreExpr -- Omitted

9
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To sum it up, the difference between Rec and NonRec binding is that the variable
being bound is not in scope in the right hand side of a non-recursive binding,
whereas all the identifiers in a recursively bound group are in scope in all the right
hand sides of that group. (Actually, there’s another difference, though it’s not
important for our discussion: NonRec bindings can bind types as well as values,
whereas Rec cannot, since infinite types are frowned upon!)

As an aside, it’s interesting to note that it is always safe to bring something
into scope with a mutually recursive Rec binding (if we assume variable names are
all unique), but it impedes optimization of the resulting Core code. As a result,
a part of GHC called the simplifier constantly tries to reduce Rec bindings into
simple NonRec ones if possible. We will discuss the simplifier more later on, as it
has an important role in the Core pipeline.

Before I continue with the discussion of how all this relates to Strict Haskell,
let’s briefly discuss the meaning of three of the Core datatype constructors that
won’t feature in a major way in this article but which I include for completeness:
Lit , Cast and Note.

Remember those System FC extensions to System F that I mentioned? Well,
they essentially take the form of the additional Expr constructor Cast . All this says
is that the expression it contains should be coerced according to it’s Coercion. Like
all operations on types, this information is erased at runtime on the understanding
that only valid casts have been inserted by the desugaring and Core pipeline stages
and hence execution will not “go wrong” despite the lack of dynamic checks.

The Lit constructor simply allows primitive values with unboxed types such as
Char# and Int# to appear in the expression language, which are essential but
boring features of Core. Finally, the Note constructor is used to attach some extra
information to arbitrary points in a Core expression, such as which cost center [6]
it’s execution should be counted against.

As I mentioned, we won’t have to worry about these alternatives in this article,
though you’ll need to understand them if you come to write a plugin yourself. Let’s
move on to discuss the final two Core constructors, which are the really interesting
ones.

The harmony of suspension and evaluation

The last two constructors, Let and Case, are some of the more powerful constructs
of Core. What they have in common is that they allow the binding of new names
over other Core expressions, but the way they go about it is rather different.

The Let constructor of Core takes one of the binding groups we’ve already
discussed (CoreBinds) and binds it over another expression in the obvious fashion.
A simple example might be the following code, which adds the result of a call to
a function foo (with an unboxed argument type) to itself:
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let x = foo 10 #
in x + x

This just turns into the following bit of CoreExpr :

Let (NonRec x bndr (App (Var foo bndr)
(Lit (mkMachInt 10))))

(App (App (Var plusInt) (Var x bndr))
(Var x bndr))

The final Core constructor is Case. This is rather more involved than Let ,
because as well as binding a value it also performs a control flow action, selecting
one of the case alternatives. Accordingly, the expression Case e b t alts , which
represents a case statement, is read as the rather complicated statement “bind the
expression e to the binder b, then do a case split on the outermost constructor of
e in order to descend into the right-hand-side of the pattern matching alternatives
alts (which all have type t) which corresponds to that constructor”.

I appreciate that this is quite a mouthful, so let’s look at a concrete example
incorporating a Case construct. Consider the following, rather contrived, Core
language expression:

case (Just 10#) of wild
(Just val)→ val
→ 20 #

You may notice that the syntax of a Core case construct differs somewhat that
of Haskell, as it has an extra variable (called wild in our example, and b in our
explanation of case above) after the of keyword. This is bound to the scrutinee
(the expression scrutinised by the Case) and is included in the language because
it turns out to make various optimizations easier to express.

If we were to render this fragment of Core into a CoreExpr syntax tree we obtain
a value as follows :

Case (App (Var $ dataConWrapId just data con)
(Lit $ mkMachInt 10))
wild bndr
intPrimTy
[(DEFAULT , [ ],Lit $ mkMachInt 20)
, (DataAlt just data con, [val bndr ],Var val bndr)]

Where the free variables just data con, wild bndr and val bndr (which are not
provided directly by GHC) have been appropriately set up.

11
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One thing you may want to note is that the order of the alternatives in the list
of the Case does not correspond to the order in which they are matched: actually,
they are ordered according to a canonical order on the data constructor being
matched by each alternative. This is because in Core a case expression cannot
perform a nested pattern match, which makes the order in which matches are
performed irrelevant.

For the purposes of this article, the most crucial difference between Let and Case
is that when we compile a Let GHC generates code to create a thunk – a suspended
computation – which may be evaluated by other code at a later time. This differs
from a Case expression, which compiles into code which directly evaluates the
expression being scrutinised just as far as it’s outermost data constructor (into the
so-called “weak head normal form”). The thunks are exactly what give Haskell
it’s non-strict evaluation strategy, so if we were to systematically replace Let with
Case in the entire program we would just end up with a strict version of the input
Haskell program! This is what we’re going to explore in the next section of this
article.

In which we junk the thunks

Now we’re all experts in the facilities provided to us by GHC’s Core language,
let’s put that knowledge to work in our new plugin. We begin by writing a small
harness whose purpose is to inject our “strictifying” Core pass into the compiler
pipeline: this is shown in Figure 3.

One thing you may not be familiar with in this code is the PHASE pragma. This
serves to introduce a new compiler phase, and every Core pass must be associated
with exactly one of those Core phases so the compiler can work out when in the
Core pipeline it should be applied to the program being compiled. The constraints
I’ve put on the StrictificationPhase in this example just ensure that it runs quite
early in the pipeline, so we can get maximum benefit from any optimizations later
in the pipeline. We rather hope that these optimizations will be able to use the
new-found strictness of the program as modified by our pass to optimize much
more aggressively than they would otherwise.

For further information on the use of the new PHASE pragma, which also has
applications in the specification of rules and inlining, please see the GHC users
guide [7].

Another interesting feature of this code is the reference to a
defaultGentleSimplPass , which is an instruction to the compiler to invoke the“sim-
plifier” I alluded to earlier. The simplifier is a built-in Core pass that performs
many janitorial operations on the Core syntax tree, such as β-reduction, inlining,
rule application, and reducing the amount of variable shadowing in the syntax tree.
In this instance we are using a “gentle” invocation that instructs the simplifier to
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{-# LANGUAGE TemplateHaskell #-}
module StrictifyPlugin (plugin) where

import GHCPlugins
import GHC .Prim ( {-# PHASE InitialSimplification #-} )

{-# PHASE StrictificationPhase > InitialSimplification, < 2 #-}
plugin :: Plugin
plugin = defaultPlugin {

getPasses = do
Just pass nm ← thNameToGhcNameM StrictificationPhase
return [CoreToDo pass nm

(CoreDoPasses
[defaultGentleSimplPass
,CoreDoPluginPass (BindsToBindsPluginPass
"Strictify" pass)

])
]

}
pass :: [CoreBind ]→ CoreM [CoreBind ]
pass = error "Read the rest of the article!"

Figure 3: The basis for the strictifying plugin
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do a minimal amount of optimization, but which does make it remove any spurious
recursive lets which are binding non-recursive values. The motivation behind this
is that the presence of these would impede the applicability of our strictifying pass,
as I will discuss shortly.

As you can see, it’s now up to us to write a function of type [CoreBind ] →
CoreM [CoreBind ] that actually performs the strictification. The strictification
process essentially requires us to replace every applicable Let with a Case, and
I’ve chosen to implement this as a generic bottom-to-top traversal over the Core
syntax tree. This means we need to write a function that takes an expression
whose subcomponents have been strictified and strictifies that new expression.

One wrinkle we need to take account of when designing this function is that
since:

(e1 e2) = (let x = e2 in e1 x) [for fresh x]

We also need to be careful to translate the arguments of applications. Indeed,
GHC will transform Core into a slightly different “STG” representation before
sending it off to code generation, and one thing done by that transformation is
to turn all complex applications (i.e. application of arguments that are not just
vanilla variables) into explicit lets to make it clear thunks are being introduced.
However, as plugins work at the Core level we will have to deal with the fact that
thunks may be implicitly introduced by an application for ourselves.

Furthermore, if we went around trying to strictify recursive bindings by using
Case in some manner we would quickly find one of two things. Firstly, we might
find that it is a function binding, in which case trying to evaluate them with
Case is fruitless as functions are already values. Alternatively, we might find
that they weren’t functions but rather values defined using value recursion (e.g.
ones = 1 : ones) – and making such things strict can introduce non-termination!

The resulting pass is presented, with inline commentary, in Figure 4. This is
ready for use during compilation in just the same manner as with the simple “hello
world” plugin I demonstrated in the previous section.

Discriminating plugins use annotations

In the last section we lovingly crafted a compiler plugin that took whatever module
it was compiled with, and made it all strict. Often, you would want your plugins
to be a bit more selective, and only apply to a few carefully chosen values. You
may even want to attach some extra information to those values to guide the trans-
formation or analysis that the plugin performs: imagine, for example, annotating
some functions with preconditions and postconditions in the style of Xu [8] which
are then checked by a theorem proving plugin.

14
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{-# LANGUAGE PatternGuards #-}
import Data.Generics
import Data.Maybe

-- Applies the generic traversal to the entire program,
-- strictifying it

pass :: [CoreBind ]→ CoreM [CoreBind ]
pass binds = everywhereM (mkM strictifyExpr) binds

-- The core generic traversal that strictifies
-- an expression given that its subexpressions
-- have been strictified already

strictifyExpr :: CoreExpr → CoreM CoreExpr
strictifyExpr e@(Let (NonRec b e1 ) e2 )
| Type ← e1 = return e -- This can occur if the Let

-- is binding a type variable
| otherwise = return (Case e1 b (exprType e2 )

[(DEFAULT , [ ], e2 )])
strictifyExpr e@(App e1 e2 )

= case e2 of -- Decides which sorts of arguments to e
-- we would like to strictify

App → translate
Case → translate
Cast → translate -- May as well, these
Note → translate -- two don’t appear on

-- types anyway
→ return e

where
translate = do

-- We must invent a new name to bind the
-- evaluated thing to. The call to
-- mkSysLocalM here generates such a new
-- variable with the same type as e2 and
-- the name ”strict”

b ← mkSysLocalM (fsLit "strict") (exprType e2 )
return (Case e2 b (exprType e)

[(DEFAULT , [ ],App e1 (Var b))])
strictifyExpr e = return e

Figure 4: The main worker for the strictifying plugin
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We’re going to put the new GHC annotations system to work by demonstrating
how we can use it to achieve the more mundane of these tasks: selecting some
functions to strictify. Let’s say that we want to declare an annotation StrictifyMe
so that programs being compiled can include an annotation of this form:

{-# ANN myfunction StrictifyMe #-}
myfunction = ...

This makes use of GHC’s new ANN pragma that can be used to decorate variables
with arbitrary user-defined information. I’ll discuss this further later, but for now
it suffices to know that if we want to use our new custom StrictifyMe annotation,
all we need is to have imported a module containing a data declaration like so:

{-# LANGUAGE DeriveDataTypeable #-}
data StrictifyMode = StrictifyMe

deriving (Typeable)

Now, given that our plugin has also imported the annotation-declaring module
it becomes very straightforward to write a function to test if a binder has been
marked as a candidate for strictification:

shouldStrictify :: CoreBndr → CoreM Bool
shouldStrictify bndr = fmap (¬.null) $

findAnnotations (NamedTarget (getName bndr))
:: CoreM [StrictifyMode ]

This check can be incorporated into our original strictification pass straightfor-
wardly, by having the pass function of Figure 4 only perform the generic traversal
on suitably annotated top-level binders.

As I alluded to earlier, annotations can do a lot more than this: in particular,
they can carry data around, and apply to types and modules as well as normal
identifiers. Further details on how this works will be available in the fullness of
time in the GHC users guide [7], but in the meantime you may find some useful
information on the GHC wiki [9].

Conclusions

I hope this sample has given you a bit of a taste for the power of some of the
new facilities added to GHC as part of this Google Summer of Code project: not
only compiler plugins, but a new phase control and annotations system are now
available for GHC users to make use of!
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The big caveat with what I’ve shown you is that none of it is yet merged into
GHC, and in all likelihood there will be some further tweaks to how it all fits
together before the release. I hope to have the new facilities incorporated the 6.12
release of GHC.

I’m very much looking forward to seeing the uses to which the Haskell community
will put the new-found power of compiler plugins, so if I’ve managed to whet your
appetite for a little compiler engineering, please try out the plugin faciliets when
they are released! Much more information about how to get started writing plugins
is available to support you. Firstly, you can see a version of the sample plugin I
developed in this article, along with some others, at code.haskell .org [10, 11, 12].
Secondly, as part of the Summer of Code considerable amounts of documentation
were made available about the internals of GHC and the GHC API by myself
and Thomas Schilling: this will all be available with your GHC release from 6.10
onwards. Lastly, don’t forget that you can ask questions about particular things
you’re stuck on either on the Glasgow Haskell Compiler Users mailing list [13], the
developers list [14] or in the #ghc IRC channel on freenode.net .

Best of luck!
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Appendix

data Expr b
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b ]
| Cast (Expr b) Coercion
| Note Note (Expr b)
| Type Type

type Arg b = Expr b

type Alt b = (AltCon, [b ],Expr b)

data Bind b = NonRec b (Arg b)
| Rec [(b, (Expr b))]

type CoreExpr = Expr Id
type CoreArg = Arg Id
type CoreAlt = Alt Id
type CoreBind = Bind Id

Figure 5: The Core language datatypes





How to Build a Physics Engine

by Roman Cheplyaka 〈roma@ro-che.info〉

This article describes my experience in building physics engine as Summer of Code
project mentored by Haskell.org.

About the project

A physics engine is a program or library which predicts evolution of a system
according to the laws of physics. It does so by performing a simulation; values
such as position, velocity etc. are recomputed iteratively at consecutive moments
in time.

Physics engines today have many applications, ranging from engineering to ani-
mation to virtual reality. For many of these, the speed of the simulation is crucial,
while the number of bodies may increase arbitrarily. The natural way to ensure
good performance is to make the simulation parallelizable.

Data Parallel Haskell (DPH) [1] is an extension to GHC which allows writing
parallel (more precisely, data parallel) programs rather easily. Hence the idea of
the project to implement a high-performance physics engine using DPH.

This project got the name Hpysics. From the project’s weblog [2]:

Most of the Summer of Code projects deal with existing projects. How-
ever, I’m going to create the new one. And every project needs some
name.

So for now I’ll pick up the codename hpysics – it’s ”physics” with two
first letters swapped. The first ”h” indicates that engine is written in
Haskell (this is a convention which lots of Haskell projects use).

The latest source code is available from the darcs repository [3]. Some other
information (including a link to the demo video) is available on the project’s home-
page [4].
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I’m going to present my work in two articles. This one will describe general
tasks and problems which arise when implementing a physics engine. Another one
will dive more deeply into DPH and how it can be used in dynamic simulation.

Limitations

The simulated world is three-dimensional Euclidean space.
The simulated bodies are rigid. This means that the shape of the bodies does

not change during the simulation. Also, there’s currently no support for articulated
bodies (although it may be added in future).

All bodies have a convex polyhedral shape. Other convex shapes can be ap-
proximated by polyhedra with arbitrary precision. Non-convex shapes can be
represented by the union of disjoint convex shapes.

Furthermore, the engine assumes that the only forces that have impact on the
bodies are gravity and contact forces which appear when several bodies collide.

Basic simulation

Consider the world consisting of just one body. It has some constant parameters
(mass, shape, inertia) and variable parameters (position, orientation, linear and
angular velocities). The goal of the simulation is to compute variable parameters
at the next moment of time based on their current values.

Since we have a single body, no collisions are possible, so the body moves with
the constant acceleration of g.

Linear velocity and position (of the center of mass) evolves as follows:

v′ = v + g∆t,

x′ = x + v∆t +
g∆t2

2

where ∆t denotes the step of the simulation.
The above formulas represent the solution to the system of ordinary differential

equations v = dx/dt, a = dv/dt.
Similar equations arise when we consider the rotational component of motion,

namely orientation and angular velocity, however, they have no such simple ana-
lytic solution. Nevertheless, we can solve the system using approximate numeric
methods, e.g. Euler or Runge-Kutta algorithms. Interested readers can read more
in Appendix 4 of Mirtich’s thesis [5]

The code is in Hpysics/Simulation.hs.
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Dealing with collisions

We see that in the absence of collisions performing the simulation is a simple task.
What changes when we take several bodies and allow them to collide?

Well, two new problems appear. At each step we need to check whether any col-
lisions occurred, and if so, correct each of the colliding bodies’ velocities to ensure
non-penetration of the rigid bodies. The first task lies in the field of computational
geometry and is known as collision detection. The second task lies in the field of
physics and is known as collision response.

Collision detection

The main task of the collision detection is, given two shapes in the space, detect
whether they intersect. Despite the simplicity of the formulation, this problem
is not trivial and was studied by many scientists, and several algorithms were
proposed. Most of them deal with polyhedral shapes.

The Lin-Canny algorithm is easy to understand and is quite beautiful. If you
have some free time left after reading this TMR issue, I recommend you to down-
load Mirtich’s thesis [5] and read his brief overview of the algorithm and the un-
derlying theory (p. 22-24).

On the other hand, there are several problems with it. First, the procedure
described above works only if two bodies do not really intersect. This does not
seem useful, considering that our goal is the detection of the intersection. To deal
with this issue, collision is detected before it occurred by calculating decreasing
distances between bodies and using numerical root finding.

The second problem is that the Lin-Canny algorithm heavily relies on the ability
to find the closest points of two features, which is not an easy task.

In Hpysics I therefore used another algorithm, V-Clip (”Voronoi Clip”) by Mir-
tich [6]. It does not suffer from both drawbacks of Lin-Canny, at the price of being
not so beautiful and being specialized to 3-dimensional space (while Lin-Canny
works in n-dimensional Euclidean space). It is worth noting that V-Clip is, in
fact, based on the Lin-Canny algorithm.

The code is in Hpysics/VClip.hs.

Bounding volumes

Since we need to make many (i.e. O(n2)) one-to-one collision checks, it is natural
to make them as cheap as possible. One solution is to construct bounding volumes.
The idea is simple: if each of bodies lies in another volume and the volumes do
not intersect, then the bodies themselves do not collide.
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Of course, the kind of bounding volumes is chosen to simplify collision checks
for them. Most popular choices include axis-aligned bounding boxes (AABB), ori-
ented bounding-boxes (OBB) and bounding spheres. In Hpysics, I chose bounding
spheres with the center in the body’s center of mass, as they are rotationally in-
variant and thus do not need to be recomputed in each step. The other reason
is that they are well-suited for binary space partition trees, which are discussed
below.

The code is in Hpysics/BoundingSphere.hs.

Broad phase

The bounding volumes optimization, even though it speeds up simulation, does
not reduce algorithmic complexity. In order to address this issue, broad phase
collision detection was invented. The idea is to divide the space into regions and
check only those pairs of bodies which (at least partially) lie in one region.

Again, several algorithms and data structures are available here, including oc-
trees, k-d trees and BSP trees. All of them are trees in the sense that they
recursively subdivide space and represent a hierarchy of regions as a tree. They
differ in how dividing hyperplanes are chosen and how many children each tree
node has.

The code is in Hpysics/BSP.hs (incomplete).

Collision response

After we have detected a collision, contact forces should be applied to bodies to
ensure their non-penetration. There are several methods to compute these forces:
penalty, linear complementarity problem, impulse-based [5] and singular value de-
composition [7] (the last two look especially promising, for reasons described in
the cited papers).

Hpysics currently employs a very simple strategy for resolving collisions, similar
to the one described by Moore and Wilhelms [8]. When two bodies collide, we
apply opposite impulses to them (R and −R).

Let vi and ωi denote linear and angular velocities before collision, and v̄i, ω̄i

after. From the law of conservation of linear momentum we get three 6 equations
(remember, we are in 3D):

m1v̄1 = m1v1 + R,

m2v̄2 = m2v2 −R.

Similarly, due to conservation of angular momentum we have

I1ω̄1 = I1ω1 + ρ1 ×R,
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I2ω̄2 = I2ω2 − ρ2 ×R.

We introduce a collision frame i, j, k of orthonormal vectors, such that i and j
lie in the plane of collision. Two equations follow from the assumption that there’s
no friction, so the impulse R is perpendicular to the collision plane:

R · i = 0,

R · j = 0.

The last equation is the most interesting. Moore and Wilhelms write it as

(v̄2 + ω̄2 × ρ2 − v̄1 − ω̄1 × ρ1) · k = 0,

assuming that collision is completely unelastic (here ρi is the vector pointing from
the center of mass to the collision point). This produced collisions that did not
look realistic. Here is how I rewrote it:

(v̄2 + ω̄2 × ρ2 − v̄1 − ω̄1 × ρ1) · k = α(v2 + ω2 × ρ2 − v1 − ω1 × ρ1) · k.

Here α is the coefficient of restitution. Given α = 0, we get the Moore-Wilhelms
equation. When α = 1, we have completely elastic collision. For values of α in
between we can get quite realistic results.

We end up with 15 (scalar) equations, and 15 (scalar) unknowns: R, v̄1, v̄2, ω̄1, ω̄2.
The system of equations is then solved using Gauss-Jordan elimination with max-
imal pivoting.

The code is in Hpysics/Collision.hs.
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Hoogle Overview

by Neil Mitchell 〈ndmitchell@gmail.com〉

This article gives an overview of the Hoogle tool. We describe the history of Hoogle,
the improvements that have been made this summer, and plans for future features.
Finally, we discuss the design guidelines of Hoogle 4 – which may be of interest
both to budding Hoogle developers and other Haskell projects. This article does not
cover the theoretical background of Hoogle.

To try Hoogle online visit http://haskell.org/hoogle.

Introduction

To quote from the Cabal description:

“Hoogle is a Haskell API search engine, which allows you to search
many standard Haskell libraries by either function name, or by ap-
proximate type signature.”

To explore what Hoogle is, and how it can be used, let’s expand on some of
those phrases:

Haskell Hoogle is written in Haskell, and is designed for Haskell programmers.

search engine Hoogle is a tool for searching, in a similar vein to Google. 1

API Hoogle searches API’s, or “Application Programmer Interfaces” – the types
and functions provided by a package.

standard libraries By default, Hoogle will search the libraries that are shipped
with most Haskell compilers. These libraries include base, array, time, mtl
etc.

1Hoogle has no affiliation to Google, and the name is intended as a homage.
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Figure 1: Hoogle web use.

function name Searches can be performed by name, searching for substrings of
function names. One use of Hoogle is as a fast index into Haddock docu-
mentation.

type signature Searches can be performed by type signature, searching for func-
tions of the appropriate type.

approximate Hoogle tries to find the results you want, even if they don’t quite
match your actual search.

There are three main methods of using Hoogle:

Web Interface The web interface is just like a normal web search engine, requiring
no special software or installation. Just visit the website and enter your
search terms. An example of the web interface is shown in Figure 1.
URL: http://haskell.org/hoogle/

Command Line The command line tool can be downloaded from Hackage [1], and
installed using the standard Cabal commands [2]. The command line tool
has more options, and allows searches to be performed while offline. An
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Figure 2: Hoogle command line use.

example session is shown in Figure 2.
URL: http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hoogle

Lambdabot Interface When using Lambdabot [3], you can invoke the Hoogle
plugin with @hoogle.

Version History

Hoogle is now over four years old, and has undergone four complete rewrites. This
section describes each version.

Version 1

I started work on the original version of Hoogle before I started my PhD, with
only basic Haskell knowledge, and long before I had ever encountered a Monad.
Realising that my PhD was likely to be dominated by Haskell, I decided to develop
a tool to help beginners (such as myself) find some of the useful functions located
in the standard libraries. While learning Haskell I had watched experienced pro-
grammers take my code and simplify it significantly, by using some clever function
whose existence I was unaware of. I wanted to perform the same tricks!

The initial version of Hoogle was web based, and relied on client-side Javascript
to perform searches. The use of Javascript was unavoidable for a client-side web
program, but even with my limited Haskell experience I longed for proper algebraic
data types, pattern-matching and type-safety. The list of functions was obtained
from the ZVON Haskell Reference [4], who kindly provided all their function data
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in XML, for anyone to use. Hoogle worked, but suffered from huge page load times
(it had to transfer 8MB of data), and wasn’t particularly easy to use.

Version 2

Once I started my PhD I was exposed to lots of Haskell, and decided to rewrite
Hoogle in Haskell. Originally version 2 was a direct port of version 1 to Haskell,
with the searching logic moved to a server-side CGI program. However, once
Hoogle was written in Haskell it became much easier to explore type searching,
treating types as algebraic data structures. As soon as version 2 was placed on
the web, members of the #haskell IRC channel [5] began to use and discuss
it. The feedback and encouragement provided by #haskell resulted in many
improvements.

Version 2 was my first real experience at programming a large Haskell project,
and it showed. The code was poorly organised. The parser could easily be crashed
by entering malformed searches. Many features were littered throughout the code,
without clear isolation. Much of the code failed to make use of the standard
functional idioms. Eventually I reached the stage where every improvement became
an increasingly large amount of work, and became more likely to conflict with an
existing feature.

Version 3

The goal of version 3 was to improve the code so that features could be added
easily. Hoogle 3 was always intended to be the definitive version, which would be
modified, but never rewritten from scratch. The ZVON function list was replaced
with information extracted from Haddock [6], which allowed all of the hierarchi-
cal libraries to be searched. The experience of writing version 2 provided many
insights, which were incorporated. A log of all the searches performed was used to
determine where Hoogle didn’t match the users expectations. The end result was
a more polished tool.

However, version 3 was still insufficient in many ways – the most obvious design
flaw was the inability to search for higher-kinded type classes, of which Monad
is by far the most common. The other problem was scalability, Hoogle 3 scaled
linearly in the number of functions available, which worked fine on a small function
database, but became a problem when attempting to search more libraries.

Version 4

After submitting my PhD, I spent the summer working on Hoogle, sponsored by
the Google Summer of Code. Once again, version 4 was a complete rewrite. The
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largest change is that instead of using a text file containing a list of functions,
version 4 uses a binary database. This change allows Hoogle to perform searches
faster, and to scale better as more functions are added to the database.

By storing some precomputed information, searches can be made faster. For
example, if the database included the answer for all queries of length 5 and below,
these searches could be answered very quickly. However, the database would also
grow unacceptably large. Version 4 required many trade-offs, choosing the right
representation to maximise search speed and minimise database size. For example,
text searching in version 3 has time complexity O(m · n), where n is the number
of functions and m is average length of a function name. Early releases of version
4 used a trie and required only O(m) to find all the results, but at the cost of a
large database. The current version requires O(m · log n) to find the answers which
match the prefix of the search, then uses heuristics to find additional answers
quickly – although with a time complexity of O(m · n).

The Future

I hope that version 4 will be the last ever rewrite of Hoogle. Now there is a stable
base to work from, the hope is that additional features can be added neatly. Some
of the planned features are given in this section, but none have any timescale given.

Index Hackage

Hoogle currently doesn’t index all the packages available on Hackage, but it should.
The work done for version 4 has enabled Hoogle to scale to the necessary number
of packages, so hopefully Hoogle requires no changes. However, before a package
can be indexed by Hoogle it must have documentation generated by Haddock,
and this has proved a stumbling block. To install all of Hackage is a challenge,
and to do so on my ailing Windows machine is an impossibility. Hackage already
generates Haddock documentation for all packages, and once this process has been
revamped, hopefully Hoogle information can be generated at the same time.

Hoogle Local

Hoogle Local is a graphical user interface to Hoogle, giving the same interface
as the web version, but operating offline. Hoogle Local allows users to locally
install API databases, customise Hoogle to a greater degree, and doesn’t require
an internet connection – but provides the same user friendly interface as the web
version. This feature has been partially implemented, making use of Firefox 3 as
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an XULRunner host. The development version is useable but lacks the necessary
polish to release more widely.

Multilingual Hoogle

Hoogle is currently focused on Haskell, with support for most GHC type system
extensions. But internally, Hoogle does not support all of Haskell’s advanced
type features – multi-parameter type classes are not supported directly, but are
translated into single-parameter type classes. A more accurate description might
be that Hoogle supports searching over a core type language, which Haskell’s
type language is translated into. We suspect that other programming languages
could also be translated into Hoogle’s type system. There are three classes of
programming languages that Hoogle might support:

I Languages based on the Hindley-Milner type system. Some of these lan-
guages have type systems which are a subset of Haskell. These languages
should permit a fairly straightforward translation – obvious examples include
ML and Clean.

I Strongly typed languages, typically object oriented. F# has shown that a
functional language can interface with object-oriented languages in a reason-
ably natural way, by adding some features and by translating others. Hoogle
could use some of the same ideas, and expand to search languages such as
Java and C#.

I Untyped languages, typically scripting languages. Languages such as Perl,
Python and Javascript don’t have any formal types in their interfaces, but
often there is some notion of what subset of values should be passed to which
function – sometimes encoded as a runtime check. This information could
be used to give approximate types to functions, and allow Hoogle searching.

Hopefully one day Hoogle will be a general purpose programming language
search engine, that works well for both Haskell and other programming languages.

Design Guidelines

This section explains the guidelines used for organising the Hoogle codebase. This
information is intended to serve both as a reference to budding Hoogle developers,
and as my current view of best practices in large-scale Haskell development. Hoogle
has been rewritten from scratch four times, each time incorporating knowledge
gained from previous attempts, and iteratively improving the code layout. Some
of these lessons may apply to other projects, and help avoid painful rewrites!
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Structure your code as a library

Hoogle is a program, but is structured as a library, with client programs which
make use of the library. Any code within the Hoogle module tree is part of the
library, and is carefully checked to expose a sensible interface. Each client which
makes use of Hoogle has its own top-level module. For the purposes of deployment,
there is no library, but if the need arises an explicit library can easily be added.
By forcing a split between the underlying functionality and the user interface, and
by imagining other potential users of the library, we gain a cleaner separation of
concerns.

Put types in their own module

All the data type definitions are placed in a module of their own, at the bottom
of the import hierarchy. For example, type signatures are defined in the module
Hoogle.TypeSig.Type. This module also contains basic utility functions (isTypeApp,
fromTypeApp) and instances (Eq, Show). I have found that by separating out data
type definitions, it is much easier to avoid mutual recursion between modules.

Group operations on a type

All basic operations on a type share the same module prefix. For example, opera-
tions on type signatures are given module names such as Hoogle.TypeSig.Parse and
Hoogle.TypeSig.Render, each responsible for one particular operation. For mod-
ules wishing to use type signatures there is Hoogle.TypeSig.All which imports and
re-exports all the modules within Hoogle.TypeSig, usually with a more restrictive
export list. The intention is that no module outside of Hoogle.TypeSig should
ever import a module other than .All. Many internal details can be hidden from
the users of type signatures, which are useful to expose to the operations on type
signatures.

Originally the .All module was simply called Hoogle.TypeSig – which seems like
a more natural choice. However, having the .All module in the same directory as
the other related modules is beneficial, and makes it easier to keep the modules
in sync. Additionally, it becomes easy to spot when a module from a different
module prefix imports something in violation of the guidelines.

Use a hierarchy

Hoogle is structured as a library, with Hoogle.All exporting all the definitions that
a client may wish to use. Anything exported from this module is intended as a
permanent interface, and is relatively stable. Unfortunately, often clients of the
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Hoogle library need access to more specific details – details that are semi-stable,
but which are not ready to form part of the standard interface. By letting clients
import modules such as Hoogle.TypeSig.All, the official interface avoids getting
polluted, but the features can be still implemented.

Over time I hope that clients importing modules other than Hoogle.All will de-
crease, as proper thought is given to the interface, and the right abstractions are
identified. By allowing greater flexibility the hope is that long-term maintenance
will not be hampered by the pressing need to add one particular feature.

Provide one executable

Version 3 had four executable programs – one to generate ranking information, one
to do command line searching, one to do web searching, and one to do regression
testing. Version 4 has one executable, which does all the above and more, con-
trolled by flags. There are many advantages to providing only one end program – it
reduces the chance of code breaking without noticing it, it makes the total file size
smaller by not duplicating the Haskell run-time system, it decreases the number of
commands users need to learn. The move to one multipurpose executable seems
to be a common theme, which tools such as darcs and hpc both being based on
one command with multiple modes.

Conclusion

Hoogle is not yet finished. In addition to the future tasks given in this article, there
are plenty of suggestions and bugs outstanding, most of which are documented in
the bug database (http://code.google.com/p/ndmitchell/issues/list). Some bugs are
marked as beginner, meaning they can be easily tackled by someone new to Hoogle
– and in some cases someone new to Haskell. If anyone wants to help, please email
me at ndmitchell@gmail.com.

As the task of programming goes from one of painting on a blank canvas, to one
of plumbing together existing components, Haskell has a distinct advantage with
its high-level abstractions. As the number of libraries increases, finding the right
functionality becomes harder. Hoogle aims to help by providing a simple way to
find the right functions.
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