Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Haskell
Wiki community
Recent changes
Random page
HaskellWiki
Search
Search
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Contstuff
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Basics == === ContT === The ''ContT'' monad transformer is the simplest of all CPS-based monads: <haskell> newtype ContT r m a </haskell> It essentially gives you access to the current continuation, which means that it lets you label certain points of execution and reuse these points later in interesting ways. With ''ContT'' you get an elegant encoding of computations, which support: * abortion (premature termination), * resumption (start a computation at a certain spot), * branches (aka ''goto''), * result accumulation, * etc. All these features are effects of ''ContT''. If you don't use them, then ''ContT'' behaves like the identity monad. A computation of type <hask>ContT r m a</hask> is a CPS computation with an intermediate result of type <hask>a</hask> and a final result of type <hask>r</hask>. The <hask>r</hask> type can be polymorphic most of the time. You only need to specify it, if you use some of the CPS effects like <hask>abort</hask>. To run a ''ContT'' computation you can use <hask>runContT</hask> or the convenience function <hask>evalContT</hask>: <haskell> runContT :: (a -> m r) -> ContT r m a -> m r evalContT :: Applicative m => ContT r m r -> m r </haskell> The <hask>runContT</hask> function takes a final continuation transforming the last intermediate result into a final result. The <hask>evalContT</hask> function simply passes <hask>pure</hask> as the final continuation. === Abortion === Let's have a look at a small example: <haskell> testComp1 :: ContT () IO () testComp1 = forever $ do txt <- io getLine case txt of "info" -> io $ putStrLn "This is a test computation." "quit" -> abort () _ -> return () </haskell> This example demonstrates the most basic feature of ''ContT''. First of all, ''ContT'' is a monad transformer, so you can for example lift ''IO'' actions to a CPS computation. The <hask>io</hask> function is a handy tool, which corresponds to <hask>liftIO</hask> from other transformer libraries and to <hask>inBase</hask> from [[monadLib]], but is restricted to the ''IO'' monad. You can also use the more generic <hask>base</hask> function, which promotes a base monad computation to ''ContT''. Each ''ContT'' subcomputation receives a continuation, which is a function, to which the subcomputation is supposed to pass the result. However, the subcomputation may choose not to call the continuation at all, in which case the entire computation finishes with a final result. The <hask>abort</hask> function does that. === Resumption and branches === You can capture the current continuation using the common <hask>callCC</hask> function. If you just need branches, there are two handy functions for this: <haskell> labelCC :: a -> ContT r m (a, Label (ContT r m) a) goto :: Label (ContT r m) a -> a -> ContT r m () </haskell> These slightly complicated looking functions are actually very simple to use: <haskell> testComp2 :: ContT r IO () testComp2 = do (i, again) <- labelCC 0 io (print i) when (i < 10) $ goto again (i+1) io (putStrLn $ "Final result: " ++ show i) </haskell> The <hask>labelCC</hask> function establishes a label to jump to by capturing its own continuation. It returns both its argument and a label. The <hask>goto</hask> function takes a label and a new argument. The effect is jumping to the corresponding label, but returning the new argument. So when <hask>labelCC</hask> is reached the <hask>i</hask> variable becomes 0. Later <hask>goto</hask> jumps back to the same point, but gives <hask>i</hask> a new value 1, as if <hask>labelCC</hask> were originally called with 1 as the argument. Labels are first class values in ''contstuff''. This means you can carry them around. They are only limited in that they can't be carried outside of a ''ContT'' computation. === Lifting === As noted earlier there are three lifting functions, which you can use to access monads in lower layers of the transformer stack: <haskell> lift :: (Transformer t, Monad m) => m a -> t m a base :: LiftBase m => Base m a -> m a io :: (LiftBase m, Base m ~ IO) => Base m a -> m a </haskell> The <hask>lift</hask> function promotes a computation of the underlying monad. The <hask>base</hask> function promotes a computation of the base monad. It is a generalization of <hask>liftIO</hask> from other monad transformer libraries. Finally there is <hask>io</hask>, which is simply an alias for <hask>base</hask>, but restricted to ''IO''. === Accumulating results === ''ContT'' does not require the underlying functor to be a monad. Whenever the underlying functor is an <hask>Alternative</hask> functor, there is support for accumulating results using the <hask>(<|>)</hask> combinator. In other words, if <hask>m</hask> is an <hask>Alternative</hask>, then <hask>ContT r m</hask> is, too. Here is an example: <haskell> testComp3 :: Num a => ContT r [] (a, a) testComp3 = do x <- pure 10 <|> pure 20 y <- pure (x+1) <|> pure (x-1) return (x, y) </haskell> The ''contstuff'' library implements a convenience function <hask>listA</hask>, which turns a list into an <hask>Alternative</hask> computation: <haskell> listA :: (Alternative f) => [a] -> f a </haskell> Using this you can simplify <hask>testComp3</hask> to: <haskell> testComp3' :: Num a => ContT r [] (a, a) testComp3' = do x <- listA [10, 20] y <- listA [x+1, x-1] return (x, y) </haskell> You can collapse branches using <hask>abort</hask>: <haskell> testComp4 :: Num a => ContT (a, a) [] (a, a) testComp4 = do x <- listA [10, 20] when (x == 10) (abort (10, 10)) y <- listA [x+1, x-1] return (x, y) </haskell>
Summary:
Please note that all contributions to HaskellWiki are considered to be released under simple permissive license (see
HaskellWiki:Copyrights
for details). If you don't want your writing to be edited mercilessly and redistributed at will, then don't submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
DO NOT SUBMIT COPYRIGHTED WORK WITHOUT PERMISSION!
Cancel
Editing help
(opens in new window)
Toggle limited content width