Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Haskell
Wiki community
Recent changes
Random page
HaskellWiki
Search
Search
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
User:Michiexile/MATH198/Lecture 1
(section)
User page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
User contributions
Logs
View user groups
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Backwards!==== If we have a path given by the arrows <math>(f,g)</math> in <math>G_2</math>, we expect <math>f:A\to B</math> and <math>g:B\to C</math> to compose to something that goes <math>A\to C</math>. The origin of all these ideas lies in geometry and algebra, and so the abstract arrows in a category are ''supposed'' to behave like functions under function composition, even though we don't say it explicitly. Now, we are used to writing function application as <math>f(x)</math> - and possibly, from Haskell, as <hask>f x</hask>. This way, the composition of two functions would read <math>g(f(x))</math>. On the other hand, the way we write our paths, we'd read <math>f</math> then <math>g</math>. This juxtaposition makes one of the two ways we write things seem backwards. We can resolve it either by making our paths in the category go backwards, or by reversing how we write function application. In the latter case, we'd write <math>x.f</math>, say, for the application of <math>f</math> to <math>x</math>, and then write <math>x.f.g</math> for the composition. It all ends up looking a lot like Reverse Polish Notation, and has its strengths, but feels unnatural to most. It does, however, have the benefit that we can write out function composition as <math>(f,g) \mapsto f.g</math> and have everything still make sense in all notations. In the former case, which is the most common in the field, we accept that paths as we read along the arrows and compositions look backwards, and so, if <math>f:A\to B</math> and <math>g:B\to C</math>, we write <math>g\circ f:A\to C</math>, remembering that ''elements'' are introduced from the right, and the functions have to consume the elements in the right order. ---- The existence of the identity map can be captured in a function language as well: it is the existence of a function <math>u:G_0\to G_1</math>. Now for the remaining rules for composition. Whenever defined, we expect associativity - so that <math>h\circ(g\circ f)=(h\circ g)\circ f</math>. Furthermore, we expect: # Composition respects sources and targets, so that: #* <math>s(g\circ f) = s(f)</math> #* <math>t(g\circ f) = t(g)</math> # <math>s(u(x)) = t(u(x)) = x</math> In a category, arrows are also called ''morphisms'', and nodes are also called ''objects''. This ties in with the algebraic roots of the field. We denote by <math>Hom_C(A,B)</math>, or if <math>C</math> is obvious from context, just <math>Hom(A,B)</math>, the set of all arrows from <math>A</math> to <math>B</math>. This is the ''hom-set'' or ''set of morphisms'', and may also be denoted <math>C(A,B)</math>. If a category is large or small or finite as a graph, it is called a large/small/finite category. A category with objects a collection of sets and morphisms a selection from all possible set-valued functions such that the identity morphism for each object is a morphism, and composition in the category is just composition of functions is called ''concrete''. Concrete categories form a very rich source of examples, though far from all categories are concrete. Again, the Wikipedia page on Category (mathematics) [[http://en.wikipedia.org/wiki/Category_%28mathematics%29]] is a good starting point for many things we will be looking at throughout this course.
Summary:
Please note that all contributions to HaskellWiki are considered to be released under simple permissive license (see
HaskellWiki:Copyrights
for details). If you don't want your writing to be edited mercilessly and redistributed at will, then don't submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
DO NOT SUBMIT COPYRIGHTED WORK WITHOUT PERMISSION!
Cancel
Editing help
(opens in new window)
Toggle limited content width