Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Haskell
Wiki community
Recent changes
Random page
HaskellWiki
Search
Search
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Prime numbers
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== From Squares === But we can start each elimination step at a prime's square, as its smaller multiples will have been already produced and discarded on previous steps, as multiples of smaller primes. This means we can stop early now, when the prime's square reaches the top value ''m'', and thus cut the total number of steps to around <math>\textstyle n = \pi(m^{0.5}) = \Theta(2m^{0.5}/\log m)</math>. This does not in fact change the complexity of random-access code, but for lists it makes it <math>O(m^{1.5}/(\log m)^2)</math>, or <math>O(n^{1.5}/(\log n)^{0.5})</math> in ''n'' primes produced, a dramatic speedup: <haskell> primesToQ m = eratos [2..m] where eratos [] = [] eratos (p:xs) = p : eratos (xs `minus` [p*p, p*p+p..m]) -- eratos (p:xs) = p : eratos (xs `minus` map (p*) [p..div m p]) -- eulers (p:xs) = p : eulers (xs `minus` map (p*) (under (div m p) (p:xs))) -- turner (p:xs) = p : turner [x | x<-xs, x<p*p || rem x p /= 0] </haskell> Its empirical complexity is around <math>O(n^{1.45})</math>. This simple optimization works here because this formulation is bounded (by an upper limit). To start late on a bounded sequence is to stop early (starting past end makes an empty sequence – ''see warning below''<sup><sub> 1</sub></sup>), thus preventing the creation of all the superfluous multiples streams which start above the upper bound anyway <small>(note that Turner's sieve is unaffected by this)</small>. This is acceptably slow now, striking a good balance between clarity, succinctness and efficiency. <sup><sub>1</sub></sup><small>''Warning'': this is predicated on a subtle point of <code>minus xs [] = xs</code> definition being used, as it indeed should be. If the definition <code>minus (x:xs) [] = x:minus xs []</code> is used, the problem is back and the complexity is bad again.</small>
Summary:
Please note that all contributions to HaskellWiki are considered to be released under simple permissive license (see
HaskellWiki:Copyrights
for details). If you don't want your writing to be edited mercilessly and redistributed at will, then don't submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
DO NOT SUBMIT COPYRIGHTED WORK WITHOUT PERMISSION!
Cancel
Editing help
(opens in new window)
Toggle limited content width