Euler problems/91 to 100: Difference between revisions
Marypoppins (talk | contribs) No edit summary |
mNo edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
== [http://projecteuler.net/index.php?section=problems&id=91 Problem 91] == | |||
Find the number of right angle triangles in the quadrant. | |||
Solution: | |||
<haskell> | |||
reduce x y = (quot x d, quot y d) | |||
where d = gcd x y | |||
problem_91 n = | |||
3*n*n + 2* sum others | |||
where | |||
others =[min xc yc| | |||
x1 <- [1..n], | |||
y1 <- [1..n], | |||
let (yi,xi) = reduce x1 y1, | |||
let yc = quot (n-y1) yi, | |||
let xc = quot x1 xi | |||
] | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=problems&id=92 Problem 92] == | |||
Investigating a square digits number chain with a surprising property. | |||
Solution: | |||
<haskell> | |||
import Data.Array | |||
import Data.Char | |||
import Data.List | |||
makeIncreas 1 minnum = [[a]|a<-[minnum..9]] | |||
makeIncreas digits minnum = [a:b|a<-[minnum ..9],b<-makeIncreas (digits-1) a] | |||
squares :: Array Char Int | |||
squares = array ('0','9') [ (intToDigit x,x^2) | x <- [0..9] ] | |||
next :: Int -> Int | |||
next = sum . map (squares !) . show | |||
factorial n = if n == 0 then 1 else n * factorial (n - 1) | |||
countNum xs=ys | |||
where | |||
ys=product$map (factorial.length)$group xs | |||
yield :: Int -> Int | |||
yield = until (\x -> x == 89 || x == 1) next | |||
problem_92= | |||
sum[div p7 $countNum a| | |||
a<-tail$makeIncreas 7 0, | |||
let k=sum $map (^2) a, | |||
yield k==89 | |||
] | |||
where | |||
p7=factorial 7 | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=problems&id=93 Problem 93] == | |||
Using four distinct digits and the rules of arithmetic, find the longest sequence of target numbers. | |||
Solution: | |||
<haskell> | |||
import Data.List | |||
import Control.Monad | |||
import Data.Ord (comparing) | |||
solve [] [x] = [x] | |||
solve ns stack = | |||
pushes ++ ops | |||
where | |||
pushes = do | |||
x <- ns | |||
solve (x `delete` ns) (x:stack) | |||
ops = do | |||
guard (length stack > 1) | |||
x <- opResults (stack!!0) (stack!!1) | |||
solve ns (x : drop 2 stack) | |||
opResults a b = | |||
[a*b,a+b,a-b] ++ (if b /= 0 then [a / b] else []) | |||
results xs = fun 1 ys | |||
where | |||
ys = nub $ sort $ map truncate $ | |||
filter (\x -> x > 0 && floor x == ceiling x) $ solve xs [] | |||
fun n (x:xs) | |||
|n == x =fun (n+1) xs | |||
|otherwise=n-1 | |||
cmp = comparing results | |||
main = | |||
appendFile "p93.log" $ show $ | |||
maximumBy cmp $ [[a,b,c,d] | | |||
a <- [1..10], | |||
b <- [a+1..10], | |||
c <- [b+1..10], | |||
d <- [c+1..10] | |||
] | |||
problem_93 = main | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=problems&id=94 Problem 94] == | |||
Investigating almost equilateral triangles with integral sides and area. | |||
Solution: | |||
<haskell> | |||
import List | |||
findmin d = d:head [[n,m]|m<-[1..10],n<-[1..10],n*n==d*m*m+1] | |||
pow 1 x=x | |||
pow n x =mult x $pow (n-1) x | |||
where | |||
mult [d,a, b] [_,a1, b1]=d:[a*a1+d*b*b1,a*b1+b*a1] | |||
--find it looks like (5-5-6) | |||
f556 =takeWhile (<10^9) | |||
[n2|i<-[1..], | |||
let [_,m,_]=pow i$findmin 12, | |||
let n=div (m-1) 6, | |||
let n1=4*n+1, -- sides | |||
let n2=3*n1+1 -- perimeter | |||
] | |||
--find it looks like (5-6-6) | |||
f665 =takeWhile (<10^9) | |||
[n2|i<-[1..], | |||
let [_,m,_]=pow i$findmin 3, | |||
mod (m-2) 3==0, | |||
let n=div (m-2) 3, | |||
let n1=2*n, | |||
let n2=3*n1+2 | |||
] | |||
problem_94=sum f556+sum f665-2 | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=problems&id=95 Problem 95] == | |||
Find the smallest member of the longest amicable chain with no element exceeding one million. | |||
Here is a more straightforward solution, without optimization. | |||
Yet it solves the problem in a few seconds when | |||
compiled with GHC 6.6.1 with the -O2 flag. I like to let | |||
the compiler do the optimization, without cluttering my code. | |||
This solution avoids using unboxed arrays, which many consider to be | |||
somewhat of an imperitive-style hack. In fact, no memoization | |||
at all is required. | |||
<haskell> | |||
import Data.List (foldl1', group) | |||
-- The longest chain of numbers is (n, k), where | |||
-- n is the smallest number in the chain, and k is the length | |||
-- of the chain. We limit the search to chains whose | |||
-- smallest number is no more than m and, optionally, whose | |||
-- largest number is no more than m'. | |||
chain s n n' | |||
| n' == n = s | |||
| n' < n = [] | |||
| (< n') 1000000 = [] | |||
| n' `elem` s = [] | |||
| otherwise = chain(n' : s) n $ eulerTotient n' | |||
findChain n = length$chain [] n $ eulerTotient n | |||
longestChain = | |||
foldl1' cmpChain [(n, findChain n) | n <- [12496..15000]] | |||
where | |||
cmpChain p@(n, k) q@(n', k') | |||
| (k, negate n) < (k', negate n') = q | |||
| otherwise = p | |||
problem_95 = fst $ longestChain | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=problems&id=96 Problem 96] == | |||
Devise an algorithm for solving Su Doku puzzles. | |||
See numerous solutions on the [[Sudoku]] page. | |||
<haskell> | |||
import Data.List | |||
import Char | |||
top3 :: Grid -> Int | |||
top3 g = | |||
read . take 3 $ (g !! 0) | |||
type Grid = [String] | |||
type Row = String | |||
type Col = String | |||
type Cell = String | |||
type Pos = Int | |||
row :: Grid -> Pos -> Row | |||
row [] _ = [] | |||
row g p = filter (/='0') (g !! (p `div` 9)) | |||
col :: Grid -> Pos -> Col | |||
col [] _ = [] | |||
col g p = filter (/='0') ((transpose g) !! (p `mod` 9)) | |||
cell :: Grid -> Pos -> Cell | |||
cell [] _ = [] | |||
cell g p = | |||
concat rows | |||
where | |||
r = p `div` 9 `div` 3 * 3 | |||
c = p `mod` 9 `div` 3 * 3 | |||
rows = | |||
map (take 3 . drop c) . map (g !!) $ [r, r+1, r+2] | |||
groupsOf _ [] = [] | |||
groupsOf n xs = | |||
front : groupsOf n back | |||
where | |||
(front,back) = splitAt n xs | |||
extrapolate :: Grid -> [Grid] | |||
extrapolate [] = [] | |||
extrapolate g = | |||
if null zeroes | |||
then [] -- no more zeroes, must have solved it | |||
else map mkGrid possibilities | |||
where | |||
flat = concat g | |||
numbered = zip [0..] flat | |||
zeroes = filter ((=='0') . snd) numbered | |||
p = fst . head $ zeroes | |||
possibilities = | |||
['1'..'9'] \\ (row g p ++ col g p ++ cell g p) | |||
(front,_:back) = splitAt p flat | |||
mkGrid new = groupsOf 9 (front ++ [new] ++ back) | |||
loop :: [Grid] -> [Grid] | |||
loop = concatMap extrapolate | |||
solve :: Grid -> Grid | |||
solve g = | |||
head . | |||
last . | |||
takeWhile (not . null) . | |||
iterate loop $ [g] | |||
main = do | |||
contents <- readFile "sudoku.txt" | |||
let | |||
grids :: [Grid] | |||
grids = | |||
groupsOf 9 . | |||
filter ((/='G') . head) . | |||
lines $ contents | |||
let rgrids=map (concatMap words) grids | |||
writeFile "p96.log"$show$ sum $ map (top3 . solve) $ rgrids | |||
problem_96 =main | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=problems&id=97 Problem 97] == | |||
Find the last ten digits of the non-Mersenne prime: 28433 × 2<sup>7830457</sup> + 1. | |||
Solution: | |||
<haskell> | |||
problem_97 = | |||
flip mod limit $ 28433 * powMod limit 2 7830457 + 1 | |||
where | |||
limit=10^10 | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=problems&id=98 Problem 98] == | |||
Investigating words, and their anagrams, which can represent square numbers. | |||
Solution: | |||
<haskell> | |||
import Data.List | |||
import Data.Maybe | |||
import Data.Function (on) | |||
-- Replace each letter of a word, or digit of a number, with | |||
-- the index of where that letter or digit first appears | |||
profile :: Ord a => [a] -> [Int] | |||
profile x = map (fromJust . flip lookup (indices x)) x | |||
where | |||
indices = map head . groupBy fstEq . sort . flip zip [0..] | |||
-- Check for equality on the first component of a tuple | |||
fstEq :: Eq a => (a, b) -> (a, b) -> Bool | |||
fstEq = (==) `on` fst | |||
-- The histogram of a small list | |||
hist :: Ord a => [a] -> [(a, Int)] | |||
hist = let item g = (head g, length g) in map item . group . sort | |||
-- The list of anagram sets for a word list. | |||
anagrams :: Ord a => [[a]] -> [[[a]]] | |||
anagrams x = map (map snd) $ filter (not . null . drop 1) $ | |||
groupBy fstEq $ sort $ zip (map hist x) x | |||
-- Given two finite lists that are a permutation of one | |||
-- another, return the permutation function | |||
mkPermute :: Ord a => [a] -> [a] -> ([b] -> [b]) | |||
mkPermute x y = pairsToPermute $ concat $ | |||
zipWith zip (occurs x) (occurs y) | |||
where | |||
pairsToPermute ps = flip map (map snd $ sort ps) . (!!) | |||
occurs = map (map snd) . groupBy fstEq . sort . flip zip [0..] | |||
problem_98 :: [String] -> Int | |||
problem_98 ws = read $ head | |||
[y | was <- sortBy longFirst $ anagrams ws, -- word anagram sets | |||
w1:t <- tails was, w2 <- t, | |||
let permute = mkPermute w1 w2, | |||
nas <- sortBy longFirst $ anagrams $ | |||
filter ((== profile w1) . profile) $ | |||
dropWhile (flip longerThan w1) $ | |||
takeWhile (not . longerThan w1) $ | |||
map show $ map (\x -> x * x) [1..], -- number anagram sets | |||
x:t <- tails nas, y <- t, | |||
permute x == y || permute y == x | |||
] | |||
run_problem_98 :: IO Int | |||
run_problem_98 = do | |||
words_file <- readFile "words.txt" | |||
let words = read $ '[' : words_file ++ "]" | |||
return $ problem_98 words | |||
-- Sort on length of first element, from longest to shortest | |||
longFirst :: [[a]] -> [[a]] -> Ordering | |||
longFirst = flip compareLen `on` fst | |||
-- Is y longer than x? | |||
longerThan :: [a] -> [a] -> Bool | |||
longerThan x y = compareLen x y == LT | |||
-- Compare the lengths of lists, with short-circuiting | |||
compareLen :: [a] -> [a] -> Ordering | |||
compareLen (_:xs) (_:ys) = compareLen xs ys | |||
compareLen (_:_) [] = GT | |||
compareLen [] [] = EQ | |||
compareLen [] (_:_) = LT | |||
</haskell> | |||
(Cf. [[short-circuiting]]) | |||
== [http://projecteuler.net/index.php?section=problems&id=99 Problem 99] == | |||
Which base/exponent pair in the file has the greatest numerical value? | |||
Solution: | |||
<haskell> | |||
import Data.List | |||
lognum (b,e) = e * log b | |||
logfun x = lognum . read $ "(" ++ x ++ ")" | |||
problem_99 = snd . maximum . flip zip [1..] . map logfun . lines | |||
main = readFile "base_exp.txt" >>= print . problem_99 | |||
</haskell> | |||
== [http://projecteuler.net/index.php?section=problems&id=100 Problem 100] == | |||
Finding the number of blue discs for which there is 50% chance of taking two blue. | |||
Solution: | |||
<haskell> | |||
nextAB a b | |||
|a+b>10^12 =[a,b] | |||
|otherwise=nextAB (3*a+2*b+2) (4*a+3*b+3) | |||
problem_100=(+1)$head$nextAB 14 20 | |||
</haskell> |
Latest revision as of 20:08, 21 February 2010
Problem 91
Find the number of right angle triangles in the quadrant.
Solution:
reduce x y = (quot x d, quot y d)
where d = gcd x y
problem_91 n =
3*n*n + 2* sum others
where
others =[min xc yc|
x1 <- [1..n],
y1 <- [1..n],
let (yi,xi) = reduce x1 y1,
let yc = quot (n-y1) yi,
let xc = quot x1 xi
]
Problem 92
Investigating a square digits number chain with a surprising property.
Solution:
import Data.Array
import Data.Char
import Data.List
makeIncreas 1 minnum = [[a]|a<-[minnum..9]]
makeIncreas digits minnum = [a:b|a<-[minnum ..9],b<-makeIncreas (digits-1) a]
squares :: Array Char Int
squares = array ('0','9') [ (intToDigit x,x^2) | x <- [0..9] ]
next :: Int -> Int
next = sum . map (squares !) . show
factorial n = if n == 0 then 1 else n * factorial (n - 1)
countNum xs=ys
where
ys=product$map (factorial.length)$group xs
yield :: Int -> Int
yield = until (\x -> x == 89 || x == 1) next
problem_92=
sum[div p7 $countNum a|
a<-tail$makeIncreas 7 0,
let k=sum $map (^2) a,
yield k==89
]
where
p7=factorial 7
Problem 93
Using four distinct digits and the rules of arithmetic, find the longest sequence of target numbers.
Solution:
import Data.List
import Control.Monad
import Data.Ord (comparing)
solve [] [x] = [x]
solve ns stack =
pushes ++ ops
where
pushes = do
x <- ns
solve (x `delete` ns) (x:stack)
ops = do
guard (length stack > 1)
x <- opResults (stack!!0) (stack!!1)
solve ns (x : drop 2 stack)
opResults a b =
[a*b,a+b,a-b] ++ (if b /= 0 then [a / b] else [])
results xs = fun 1 ys
where
ys = nub $ sort $ map truncate $
filter (\x -> x > 0 && floor x == ceiling x) $ solve xs []
fun n (x:xs)
|n == x =fun (n+1) xs
|otherwise=n-1
cmp = comparing results
main =
appendFile "p93.log" $ show $
maximumBy cmp $ [[a,b,c,d] |
a <- [1..10],
b <- [a+1..10],
c <- [b+1..10],
d <- [c+1..10]
]
problem_93 = main
Problem 94
Investigating almost equilateral triangles with integral sides and area.
Solution:
import List
findmin d = d:head [[n,m]|m<-[1..10],n<-[1..10],n*n==d*m*m+1]
pow 1 x=x
pow n x =mult x $pow (n-1) x
where
mult [d,a, b] [_,a1, b1]=d:[a*a1+d*b*b1,a*b1+b*a1]
--find it looks like (5-5-6)
f556 =takeWhile (<10^9)
[n2|i<-[1..],
let [_,m,_]=pow i$findmin 12,
let n=div (m-1) 6,
let n1=4*n+1, -- sides
let n2=3*n1+1 -- perimeter
]
--find it looks like (5-6-6)
f665 =takeWhile (<10^9)
[n2|i<-[1..],
let [_,m,_]=pow i$findmin 3,
mod (m-2) 3==0,
let n=div (m-2) 3,
let n1=2*n,
let n2=3*n1+2
]
problem_94=sum f556+sum f665-2
Problem 95
Find the smallest member of the longest amicable chain with no element exceeding one million. Here is a more straightforward solution, without optimization. Yet it solves the problem in a few seconds when compiled with GHC 6.6.1 with the -O2 flag. I like to let the compiler do the optimization, without cluttering my code.
This solution avoids using unboxed arrays, which many consider to be somewhat of an imperitive-style hack. In fact, no memoization at all is required.
import Data.List (foldl1', group)
-- The longest chain of numbers is (n, k), where
-- n is the smallest number in the chain, and k is the length
-- of the chain. We limit the search to chains whose
-- smallest number is no more than m and, optionally, whose
-- largest number is no more than m'.
chain s n n'
| n' == n = s
| n' < n = []
| (< n') 1000000 = []
| n' `elem` s = []
| otherwise = chain(n' : s) n $ eulerTotient n'
findChain n = length$chain [] n $ eulerTotient n
longestChain =
foldl1' cmpChain [(n, findChain n) | n <- [12496..15000]]
where
cmpChain p@(n, k) q@(n', k')
| (k, negate n) < (k', negate n') = q
| otherwise = p
problem_95 = fst $ longestChain
Problem 96
Devise an algorithm for solving Su Doku puzzles.
See numerous solutions on the Sudoku page.
import Data.List
import Char
top3 :: Grid -> Int
top3 g =
read . take 3 $ (g !! 0)
type Grid = [String]
type Row = String
type Col = String
type Cell = String
type Pos = Int
row :: Grid -> Pos -> Row
row [] _ = []
row g p = filter (/='0') (g !! (p `div` 9))
col :: Grid -> Pos -> Col
col [] _ = []
col g p = filter (/='0') ((transpose g) !! (p `mod` 9))
cell :: Grid -> Pos -> Cell
cell [] _ = []
cell g p =
concat rows
where
r = p `div` 9 `div` 3 * 3
c = p `mod` 9 `div` 3 * 3
rows =
map (take 3 . drop c) . map (g !!) $ [r, r+1, r+2]
groupsOf _ [] = []
groupsOf n xs =
front : groupsOf n back
where
(front,back) = splitAt n xs
extrapolate :: Grid -> [Grid]
extrapolate [] = []
extrapolate g =
if null zeroes
then [] -- no more zeroes, must have solved it
else map mkGrid possibilities
where
flat = concat g
numbered = zip [0..] flat
zeroes = filter ((=='0') . snd) numbered
p = fst . head $ zeroes
possibilities =
['1'..'9'] \\ (row g p ++ col g p ++ cell g p)
(front,_:back) = splitAt p flat
mkGrid new = groupsOf 9 (front ++ [new] ++ back)
loop :: [Grid] -> [Grid]
loop = concatMap extrapolate
solve :: Grid -> Grid
solve g =
head .
last .
takeWhile (not . null) .
iterate loop $ [g]
main = do
contents <- readFile "sudoku.txt"
let
grids :: [Grid]
grids =
groupsOf 9 .
filter ((/='G') . head) .
lines $ contents
let rgrids=map (concatMap words) grids
writeFile "p96.log"$show$ sum $ map (top3 . solve) $ rgrids
problem_96 =main
Problem 97
Find the last ten digits of the non-Mersenne prime: 28433 × 27830457 + 1.
Solution:
problem_97 =
flip mod limit $ 28433 * powMod limit 2 7830457 + 1
where
limit=10^10
Problem 98
Investigating words, and their anagrams, which can represent square numbers.
Solution:
import Data.List
import Data.Maybe
import Data.Function (on)
-- Replace each letter of a word, or digit of a number, with
-- the index of where that letter or digit first appears
profile :: Ord a => [a] -> [Int]
profile x = map (fromJust . flip lookup (indices x)) x
where
indices = map head . groupBy fstEq . sort . flip zip [0..]
-- Check for equality on the first component of a tuple
fstEq :: Eq a => (a, b) -> (a, b) -> Bool
fstEq = (==) `on` fst
-- The histogram of a small list
hist :: Ord a => [a] -> [(a, Int)]
hist = let item g = (head g, length g) in map item . group . sort
-- The list of anagram sets for a word list.
anagrams :: Ord a => [[a]] -> [[[a]]]
anagrams x = map (map snd) $ filter (not . null . drop 1) $
groupBy fstEq $ sort $ zip (map hist x) x
-- Given two finite lists that are a permutation of one
-- another, return the permutation function
mkPermute :: Ord a => [a] -> [a] -> ([b] -> [b])
mkPermute x y = pairsToPermute $ concat $
zipWith zip (occurs x) (occurs y)
where
pairsToPermute ps = flip map (map snd $ sort ps) . (!!)
occurs = map (map snd) . groupBy fstEq . sort . flip zip [0..]
problem_98 :: [String] -> Int
problem_98 ws = read $ head
[y | was <- sortBy longFirst $ anagrams ws, -- word anagram sets
w1:t <- tails was, w2 <- t,
let permute = mkPermute w1 w2,
nas <- sortBy longFirst $ anagrams $
filter ((== profile w1) . profile) $
dropWhile (flip longerThan w1) $
takeWhile (not . longerThan w1) $
map show $ map (\x -> x * x) [1..], -- number anagram sets
x:t <- tails nas, y <- t,
permute x == y || permute y == x
]
run_problem_98 :: IO Int
run_problem_98 = do
words_file <- readFile "words.txt"
let words = read $ '[' : words_file ++ "]"
return $ problem_98 words
-- Sort on length of first element, from longest to shortest
longFirst :: [[a]] -> [[a]] -> Ordering
longFirst = flip compareLen `on` fst
-- Is y longer than x?
longerThan :: [a] -> [a] -> Bool
longerThan x y = compareLen x y == LT
-- Compare the lengths of lists, with short-circuiting
compareLen :: [a] -> [a] -> Ordering
compareLen (_:xs) (_:ys) = compareLen xs ys
compareLen (_:_) [] = GT
compareLen [] [] = EQ
compareLen [] (_:_) = LT
(Cf. short-circuiting)
Problem 99
Which base/exponent pair in the file has the greatest numerical value?
Solution:
import Data.List
lognum (b,e) = e * log b
logfun x = lognum . read $ "(" ++ x ++ ")"
problem_99 = snd . maximum . flip zip [1..] . map logfun . lines
main = readFile "base_exp.txt" >>= print . problem_99
Problem 100
Finding the number of blue discs for which there is 50% chance of taking two blue.
Solution:
nextAB a b
|a+b>10^12 =[a,b]
|otherwise=nextAB (3*a+2*b+2) (4*a+3*b+3)
problem_100=(+1)$head$nextAB 14 20