Concurrency demos/Zeta: Difference between revisions

From HaskellWiki
No edit summary
(Parallel strategies for initial "simple example")
 
(16 intermediate revisions by 6 users not shown)
Line 1: Line 1:
__TOC__
__TOC__
 
[[Category:Code]]
== A simple example of parallelism in Haskell ==
== A simple example of parallelism in Haskell ==


Line 6: Line 6:


<haskell>
<haskell>
import Control.Concurrent
import Control.Parallel.Strategies
import Control.Concurrent.MVar
import Control.Monad
import Control.Monad
import Data.Complex
import Data.Complex
import System.Environment
import System.Environment


 
-- Return the list of the terms of the zeta function for the given range.
zetaRange :: (Floating a, Integral b) => a -> (b, b) -> a
-- We don't sum the terms here but let the main thread sum the lists returned
zetaRange s (x,y) = sum [ (fromIntegral n) ** (-s) | n <- [x..y] ]
-- by all the other threads so as to avoid accumulating rounding imprecisions.
zetaRange :: (Floating a, Integral b) => a -> (b, b) -> [a]
zetaRange s (x,y) = [ fromIntegral n ** (-s) | n <- [x..y] ]


cut :: (Integral a) => (a, a) -> a -> [(a, a)]
cut :: (Integral a) => (a, a) -> a -> [(a, a)]
Line 35: Line 36:
main = do
main = do
   (t, n, s) <- getParams
   (t, n, s) <- getParams
   childs    <- zipWithM thread (repeat s) (cut (1, n) t)
  let ranges    = cut (1, n) t
      results  = map (zetaRange s) ranges `using` parList rnf
  putStr $ unlines [ "Starting thread for range " ++ show r | r <- ranges ]
  print (sum (concat results))
</haskell>
 
== With concurrent threads ==
 
Replace:
<haskell>
import Control.Parallel.Strategies
</haskell>
with:
<haskell>
import Control.Concurrent
import Control.Concurrent.MVar
</haskell>
 
=== Using mutex-variables (<code>MVar</code>) ===
* Replace <code>main</code> with:
:<haskell>
main :: IO ()
main = do
  (t, n, s) <- getParams
   childs    <- mapM (thread s) (cut (1, n) t)
   results  <- mapM takeMVar childs
   results  <- mapM takeMVar childs
   print (sum results)
   print (sum (concat results))
  where
  where
   thread s range = do
   thread s range = do
     putStrLn ("Starting thread for range " ++ show range)
     putStrLn ("Starting thread for range " ++ show range)
     mvar <- newEmptyMVar
     mvar <- newEmptyMVar
     forkIO (putMVar mvar (zetaRange s range))
     forkIO (do let zs = zetaRange s range
              when (zs==zs) $ putMVar mvar zs) -- we need to deepSeq the list
     return mvar
     return mvar
</haskell>
</haskell>


=== Using a channel (<code>Chan</code>) ===
* Replace <code>main</code> with:
:<haskell>
main :: IO ()
main = do
  (t, n, s) <- getParams
  chan      <- newChan
  terms    <- getChanContents chan
  forM_ (cut (1,n) t) $ thread chan s
  let wait xs i result
        | i >= t    = print result  -- Done.
        | otherwise = case xs of
          Nothing : rest -> wait rest (i + 1) result
          Just x  : rest -> wait rest i (result + x)
          _              -> error "missing thread termination marker"
  wait terms 0 0
where
  thread chan s range = do
    putStrLn ("Starting thread for range " ++ show range)
    forkIO $ do
      mapM_ (writeChan chan . Just) (zetaRange s range)
      writeChan chan Nothing
</haskell>


== Benchmarks ==
== Benchmarks ==


Insert benchmarks here! :-)
Here's a simple script for runing all three variants, with four threads using 1, 2, and 3 OS threads.
 
<pre>
a="$1"
[ -z "$a" ] && { echo Usage: "$0" variant_name; exit 1; }
for n in 1 2 3; do
    echo -n $a $n ' ';
    /usr/bin/time -f "%Uu %Ss %Ee %PCPU" ./z.$a 4 500000 1:+1 +RTS -N$n > /dev/null;
done;
echo;
</pre>
 
Results on a dual Opteron system:
 
* <code>strat</code> - using strategies:
:{|
|<pre>
strat 1  8.82u 0.07s 0:08.93e 99%CPU
strat 2  4.42u 0.06s 0:03.82e 117%CPU
strat 3  5.01u 0.08s 0:04.46e 114%CPU
 
</pre>
|}
 
* <code>mvar</code> - using mutex-variables:
:{|
|<pre>
mvar 1  2.52u 0.06s 0:02.63e 98%CPU
mvar 2  2.69u 0.05s 0:02.10e 130%CPU
mvar 3  2.85u 0.07s 0:02.30e 126%CPU
 
</pre>
|}
 
* <code>chan</code> - using channels:
:{|
|<pre>
chan 1  11.75u 4.06s 0:15.91e 99%CPU
chan 2  9.81u 0.05s 0:09.48e 104%CPU
chan 3  10.96u 3.25s 0:12.24e 116%CPU
 
</pre>
|}

Latest revision as of 10:58, 22 June 2021

A simple example of parallelism in Haskell

This little piece of code computes an approximation of Riemann's zeta function, balancing the work to be done between N threads.

import Control.Parallel.Strategies
import Control.Monad
import Data.Complex
import System.Environment

-- Return the list of the terms of the zeta function for the given range.
-- We don't sum the terms here but let the main thread sum the lists returned
-- by all the other threads so as to avoid accumulating rounding imprecisions.
zetaRange :: (Floating a, Integral b) => a -> (b, b) -> [a]
zetaRange s (x,y) = [ fromIntegral n ** (-s) | n <- [x..y] ]

cut :: (Integral a) => (a, a) -> a -> [(a, a)]
cut (x,y) n = (x, x + mine - 1) : cut' (x + mine) size (y - mine)
 where
  (size, modulo)   = y `divMod` n
  mine             = size + modulo

  cut' _ _ 0       = []
  cut' x' size' n' = (x', x' + size' - 1) : cut' (x' + size') size' (n' - size') 

getParams :: IO (Int, Int, Complex Double)
getParams = do
  argv <- getArgs
  case argv of
    (t:n:s:[]) -> return (read t, read n, read s)
    _          -> error "usage: zeta <nthreads> <boundary> <s>"

main :: IO ()
main = do
  (t, n, s) <- getParams
  let ranges    = cut (1, n) t
      results   = map (zetaRange s) ranges `using` parList rnf
  putStr $ unlines [ "Starting thread for range " ++ show r | r <- ranges ]
  print (sum (concat results))

With concurrent threads

Replace:

import Control.Parallel.Strategies

with:

import Control.Concurrent
import Control.Concurrent.MVar

Using mutex-variables (MVar)

  • Replace main with:
main :: IO ()
main = do
  (t, n, s) <- getParams
  childs    <- mapM (thread s) (cut (1, n) t)
  results   <- mapM takeMVar childs
  print (sum (concat results))
 where
  thread s range = do
    putStrLn ("Starting thread for range " ++ show range)
    mvar <- newEmptyMVar
    forkIO (do let zs = zetaRange s range
               when (zs==zs) $ putMVar mvar zs) -- we need to deepSeq the list
    return mvar

Using a channel (Chan)

  • Replace main with:
main :: IO ()
main = do
  (t, n, s) <- getParams
  chan      <- newChan
  terms     <- getChanContents chan

  forM_ (cut (1,n) t) $ thread chan s

  let wait xs i result
        | i >= t    = print result  -- Done.
        | otherwise = case xs of
           Nothing : rest -> wait rest (i + 1) result
           Just x  : rest -> wait rest i (result + x)
           _              -> error "missing thread termination marker"

  wait terms 0 0
 where
  thread chan s range = do
    putStrLn ("Starting thread for range " ++ show range)
    forkIO $ do
      mapM_ (writeChan chan . Just) (zetaRange s range)
      writeChan chan Nothing

Benchmarks

Here's a simple script for runing all three variants, with four threads using 1, 2, and 3 OS threads.

a="$1"
[ -z "$a" ] && { echo Usage: "$0" variant_name; exit 1; }
for n in 1 2 3; do 
    echo -n $a $n ' '; 
    /usr/bin/time -f "%Uu %Ss %Ee %PCPU" ./z.$a 4 500000 1:+1 +RTS -N$n > /dev/null;
done;
echo;

Results on a dual Opteron system:

  • strat - using strategies:
 strat 1  8.82u 0.07s 0:08.93e 99%CPU
 strat 2  4.42u 0.06s 0:03.82e 117%CPU
 strat 3  5.01u 0.08s 0:04.46e 114%CPU

  • mvar - using mutex-variables:
 mvar 1  2.52u 0.06s 0:02.63e 98%CPU
 mvar 2  2.69u 0.05s 0:02.10e 130%CPU
 mvar 3  2.85u 0.07s 0:02.30e 126%CPU

  • chan - using channels:
 chan 1  11.75u 4.06s 0:15.91e 99%CPU
 chan 2  9.81u 0.05s 0:09.48e 104%CPU
 chan 3  10.96u 3.25s 0:12.24e 116%CPU