User:WillNess: Difference between revisions

From HaskellWiki
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
I'm interested in Haskell.
[https://wiki.haskell.org/index.php?title=Monad&oldid=63472 Monad is composable computation descriptions].


I like ''[http://ideone.com/qpnqe this]'':
----
 
I like ''[http://ideone.com/qpnqe this one-liner]'':


<haskell>
<haskell>
--  inifinte folding idea due to Richard Bird
--  infinite folding due to Richard Bird
--  double staged production idea due to Melissa O'Neill
--  double staged primes production due to Melissa O'Neill
--  tree folding idea Dave Bayer / simplified formulation Will Ness
--  tree folding idea Heinrich Apfelmus / Dave Bayer  
primes = 2 : g (fix g)
primes = 2 : _Y ((3:) . gaps 5
  where               
                      . foldi (\(x:xs) -> (x:) . union xs) []
    g xs = 3 : gaps 5 (foldi (\(c:cs) -> (c:) . union cs)  
                      . map (\p-> [p*p, p*p+2*p..]))  
                            [[x*x, x*x+2*x..] | x <- xs])
 
    gaps k s@(c:t)                                       
_Y g = g (_Y g)  -- multistage production via Y combinator
      | k < c = k : gaps (k+2) s    -- minus [k,k+2..] (c:t), k<=c
      | True =    gaps (k+2) t    --   fused to avoid a space leak


fix g = xs where xs = g xs            -- global defn to avoid space leak
gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
  | k < c    = k : gaps (k+2) s    --     fused for better performance
  | otherwise =    gaps (k+2) t    -- k==c
</haskell>
</haskell>


<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].


The math formula for Sieve of Eratosthenes,
The constructive definition of primes is the Sieve of Eratosthenes, '''P''' &nbsp;=&nbsp; '''N'''<sub><sub>2</sub></sub>\'''N'''<sub><sub>2</sub></sub><sub>*</sub>'''N'''<sub><sub>2</sub></sub> &nbsp;=&nbsp; '''N'''<sub><sub>2</sub></sub>\'''P'''<sub>*</sub>'''N'''<sub><sub>2</sub></sub> :


::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{n p:n \in \mathbb{N}_{p}\}</math>  
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math>  
where
using standard definition
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> &emsp; :)&emsp;:) .
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> .


Trial division sieve:
Trial division sieve is:


::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}</math>
::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}</math>


If you're put off by self-referentiality, just replace <math>\mathbb{S}</math> or <math>\mathbb{T}</math> on the right-hand side of equations with <math>\mathbb{N}_{2}</math>.
If you're put off by self-referentiality, just replace <math>\mathbb{S}</math> or <math>\mathbb{T}</math> on the right-hand side of equations with <math>\mathbb{N}_{2}</math>, as the ancient Greeks might or mightn't have done, as well.

Latest revision as of 13:50, 21 February 2023

Monad is composable computation descriptions.


I like this one-liner:

--   infinite folding due to Richard Bird
--   double staged primes production due to Melissa O'Neill
--   tree folding idea Heinrich Apfelmus / Dave Bayer 
primes = 2 : _Y ((3:) . gaps 5  
                      . foldi (\(x:xs) -> (x:) . union xs) []
                      . map (\p-> [p*p, p*p+2*p..])) 

_Y g = g (_Y g)  -- multistage production via Y combinator

gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
   | k < c     = k : gaps (k+2) s     --     fused for better performance
   | otherwise =     gaps (k+2) t     -- k==c

foldi is on Tree-like folds page. union and more at Prime numbers.

The constructive definition of primes is the Sieve of Eratosthenes, P  =  N2\N2*N2  =  N2\P*N2 :

S=N2pS{pq:qNp}

using standard definition

Nk={nN:nk}   . . . or,  Nk={k}Nk+1 .

Trial division sieve is:

T={nN2:(pT)(2pn¬(pn))}

If you're put off by self-referentiality, just replace S or T on the right-hand side of equations with N2, as the ancient Greeks might or mightn't have done, as well.