Euler problems/71 to 80: Difference between revisions
(28 intermediate revisions by 13 users not shown) | |||
Line 1: | Line 1: | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=view&id=71 Problem 71] == | ||
Listing reduced proper fractions in ascending order of size. | Listing reduced proper fractions in ascending order of size. | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_71 = | -- http://mathworld.wolfram.com/FareySequence.html | ||
import Data.Ratio ((%), numerator,denominator) | |||
fareySeq a b | |||
|da2<=10^6=fareySeq a1 b | |||
|otherwise=na | |||
where | |||
na=numerator a | |||
nb=numerator b | |||
da=denominator a | |||
db=denominator b | |||
a1=(na+nb)%(da+db) | |||
da2=denominator a1 | |||
problem_71=fareySeq (0%1) (3%7) | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=view&id=72 Problem 72] == | ||
How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000? | How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000? | ||
Solution: | Solution: | ||
Using the [http://mathworld.wolfram.com/FareySequence.html Farey Sequence] method, the solution is the sum of phi (n) from 1 to 1000000. | |||
<haskell> | <haskell> | ||
problem_72 = | groups=1000 | ||
eulerTotient n = product (map (\(p,i) -> p^(i-1) * (p-1)) factors) | |||
where factors = fstfac n | |||
fstfac x = [(head a ,length a)|a<-group$primeFactors x] | |||
p72 n= sum [eulerTotient x|x <- [groups*n+1..groups*(n+1)]] | |||
problem_72 = sum [p72 x|x <- [0..999]] | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=view&id=73 Problem 73] == | ||
How many fractions lie between 1/3 and 1/2 in a sorted set of reduced proper fractions? | How many fractions lie between 1/3 and 1/2 in a sorted set of reduced proper fractions? | ||
Solution: | Solution: | ||
If you haven't done so already, read about Farey sequences in Wikipedia | |||
http://en.wikipedia.org/wiki/Farey_sequence, where you will learn about | |||
mediants. Then divide and conquer. The number of Farey ratios between | |||
(a, b) is 1 + the number between (a, mediant a b) + the number between | |||
(mediant a b, b). Henrylaxen 2008-03-04 | |||
<haskell> | <haskell> | ||
problem_73 = | import Data.Ratio | ||
mediant :: (Integral a) => Ratio a -> Ratio a -> Ratio a | |||
mediant f1 f2 = (numerator f1 + numerator f2) % | |||
(denominator f1 + denominator f2) | |||
fareyCount :: (Integral a, Num t) => a -> (Ratio a, Ratio a) -> t | |||
fareyCount n (a,b) = | |||
let c = mediant a b | |||
in if (denominator c > n) then 0 else | |||
1 + (fareyCount n (a,c)) + (fareyCount n (c,b)) | |||
problem_73 :: Integer | |||
problem_73 = fareyCount 10000 (1%3,1%2) | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | |||
== [http://projecteuler.net/index.php?section=view&id=74 Problem 74] == | |||
Determine the number of factorial chains that contain exactly sixty non-repeating terms. | Determine the number of factorial chains that contain exactly sixty non-repeating terms. | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_74 = | import Data.List | ||
explode 0 = [] | |||
explode n = n `mod` 10 : explode (n `quot` 10) | |||
chain 2 = 1 | |||
chain 1 = 1 | |||
chain 145 = 1 | |||
chain 40585 = 1 | |||
chain 169 = 3 | |||
chain 363601 = 3 | |||
chain 1454 = 3 | |||
chain 871 = 2 | |||
chain 45361 = 2 | |||
chain 872 = 2 | |||
chain 45362 = 2 | |||
chain x = 1 + chain (sumFactDigits x) | |||
makeIncreas 1 minnum = [[a]|a<-[minnum..9]] | |||
makeIncreas digits minnum = [a:b|a<-[minnum ..9],b<-makeIncreas (digits-1) a] | |||
p74= | |||
sum[div p6 $countNum a| | |||
a<-tail$makeIncreas 6 1, | |||
let k=digitToN a, | |||
chain k==60 | |||
] | |||
where | |||
p6=facts!! 6 | |||
sumFactDigits = foldl' (\a b -> a + facts !! b) 0 . explode | |||
factorial n = if n == 0 then 1 else n * factorial (n - 1) | |||
digitToN = foldl' (\a b -> 10*a + b) 0 .dropWhile (==0) | |||
facts = scanl (*) 1 [1..9] | |||
countNum xs=ys | |||
where | |||
ys=product$map (factorial.length)$group xs | |||
problem_74= length[k|k<-[1..9999],chain k==60]+p74 | |||
test = print $ [a|a<-tail$makeIncreas 6 0,let k=digitToN a,chain k==60] | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=view&id=75 Problem 75] == | |||
== [http://projecteuler.net/index.php?section= | |||
Find the number of different lengths of wire can that can form a right angle triangle in only one way. | Find the number of different lengths of wire can that can form a right angle triangle in only one way. | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
module Main where | |||
import Data.Array.Unboxed (UArray, accumArray, elems) | |||
main :: IO () | |||
main = print problem_75 | |||
limit :: Int | |||
limit = 2 * 10 ^ 6 | |||
triangs :: [Int] | |||
triangs = [p | n <- [2 .. 1000], m <- [1 .. n - 1], odd (m + n), | |||
m `gcd` n == 1, let p = 2 * (n ^ 2 + m * n), p <= limit] | |||
problem_75 :: Int | |||
problem_75 = length $ filter (== 1) $ elems $ | |||
(\ns -> accumArray (+) 0 (1, limit) [(n, 1) | n <- ns] :: UArray Int Int) $ | |||
take limit $ concatMap (\m -> takeWhile (<= limit) [m, 2 * m .. ]) triangs | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=view&id=76 Problem 76] == | ||
How many different ways can one hundred be written as a sum of at least two positive integers? | How many different ways can one hundred be written as a sum of at least two positive integers? | ||
Solution: | Solution: | ||
Here is a simpler solution: For each n, we create the list of the number of partitions of n | |||
whose lowest number is i, for i=1..n. We build up the list of these lists for n=0..100. | |||
<haskell> | <haskell> | ||
problem_76 = | build x = (map sum (zipWith drop [0..] x) ++ [1]) : x | ||
problem_76 = (sum $ head $ iterate build [] !! 100) - 1 | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=view&id=77 Problem 77] == | ||
What is the first value which can be written as the sum of primes in over five thousand different ways? | What is the first value which can be written as the sum of primes in over five thousand different ways? | ||
Solution: | Solution: | ||
Brute force but still finds the solution in less than one second. | |||
<haskell> | <haskell> | ||
problem_77 = | counter = foldl (\without p -> | ||
let (poor,rich) = splitAt p without | |||
with = poor ++ | |||
zipWith (+) with rich | |||
in with | |||
) (1 : repeat 0) | |||
problem_77 = | |||
find ((>5000) . (ways !!)) $ [1..] | |||
where | |||
ways = counter $ take 100 primes | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=view&id=78 Problem 78] == | ||
Investigating the number of ways in which coins can be separated into piles. | Investigating the number of ways in which coins can be separated into piles. | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_78 = | import Data.Array | ||
partitions :: Array Int Integer | |||
partitions = | |||
array (0,1000000) $ | |||
(0,1) : | |||
[(n,sum [s * partitions ! p| | |||
(s,p) <- zip signs $ parts n])| | |||
n <- [1..1000000]] | |||
where | |||
signs = cycle [1,1,(-1),(-1)] | |||
suite = map penta $ concat [[n,(-n)]|n <- [1..]] | |||
penta n = n*(3*n - 1) `div` 2 | |||
parts n = takeWhile (>= 0) [n-x| x <- suite] | |||
problem_78 :: Int | |||
problem_78 = | |||
head $ filter (\x -> (partitions ! x) `mod` 1000000 == 0) [1..] | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=view&id=79 Problem 79] == | ||
By analysing a user's login attempts, can you determine the secret numeric passcode? | By analysing a user's login attempts, can you determine the secret numeric passcode? | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_79 = | import Data.Char (digitToInt, intToDigit) | ||
import Data.Graph (buildG, topSort) | |||
import Data.List (intersect) | |||
p79 file= | |||
(+0)$read . intersect graphWalk $ usedDigits | |||
where | |||
usedDigits = intersect "0123456789" $ file | |||
edges = concatMap (edgePair . map digitToInt) . words $ file | |||
graphWalk = map intToDigit . topSort . buildG (0, 9) $ edges | |||
edgePair [x, y, z] = [(x, y), (y, z)] | |||
edgePair _ = undefined | |||
problem_79 = do | |||
f<-readFile "keylog.txt" | |||
print $p79 f | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section= | == [http://projecteuler.net/index.php?section=view&id=80 Problem 80] == | ||
Calculating the digital sum of the decimal digits of irrational square roots. | Calculating the digital sum of the decimal digits of irrational square roots. | ||
This solution uses binary search to find the square root of a large Integer: | |||
<haskell> | <haskell> | ||
problem_80 = | import Data.Char (digitToInt) | ||
intSqrt :: Integer -> Integer | |||
intSqrt n = bsearch 1 n | |||
where | |||
bsearch l u = let m = (l+u) `div` 2 | |||
m2 = m^2 | |||
in if u <= l | |||
then m | |||
else if m2 < n | |||
then bsearch (m+1) u | |||
else bsearch l m | |||
problem_80 :: Int | |||
problem_80 = sum [f r | a <- [1..100], | |||
let x = a * e, | |||
let r = intSqrt x, | |||
r*r /= x] | |||
where | |||
e = 10^202 | |||
f = sum . take 100 . map digitToInt . show | |||
</haskell> | </haskell> | ||
Latest revision as of 02:57, 3 May 2015
Problem 71
Listing reduced proper fractions in ascending order of size.
Solution:
-- http://mathworld.wolfram.com/FareySequence.html
import Data.Ratio ((%), numerator,denominator)
fareySeq a b
|da2<=10^6=fareySeq a1 b
|otherwise=na
where
na=numerator a
nb=numerator b
da=denominator a
db=denominator b
a1=(na+nb)%(da+db)
da2=denominator a1
problem_71=fareySeq (0%1) (3%7)
Problem 72
How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?
Solution:
Using the Farey Sequence method, the solution is the sum of phi (n) from 1 to 1000000.
groups=1000
eulerTotient n = product (map (\(p,i) -> p^(i-1) * (p-1)) factors)
where factors = fstfac n
fstfac x = [(head a ,length a)|a<-group$primeFactors x]
p72 n= sum [eulerTotient x|x <- [groups*n+1..groups*(n+1)]]
problem_72 = sum [p72 x|x <- [0..999]]
Problem 73
How many fractions lie between 1/3 and 1/2 in a sorted set of reduced proper fractions?
Solution:
If you haven't done so already, read about Farey sequences in Wikipedia http://en.wikipedia.org/wiki/Farey_sequence, where you will learn about mediants. Then divide and conquer. The number of Farey ratios between (a, b) is 1 + the number between (a, mediant a b) + the number between (mediant a b, b). Henrylaxen 2008-03-04
import Data.Ratio
mediant :: (Integral a) => Ratio a -> Ratio a -> Ratio a
mediant f1 f2 = (numerator f1 + numerator f2) %
(denominator f1 + denominator f2)
fareyCount :: (Integral a, Num t) => a -> (Ratio a, Ratio a) -> t
fareyCount n (a,b) =
let c = mediant a b
in if (denominator c > n) then 0 else
1 + (fareyCount n (a,c)) + (fareyCount n (c,b))
problem_73 :: Integer
problem_73 = fareyCount 10000 (1%3,1%2)
Problem 74
Determine the number of factorial chains that contain exactly sixty non-repeating terms.
Solution:
import Data.List
explode 0 = []
explode n = n `mod` 10 : explode (n `quot` 10)
chain 2 = 1
chain 1 = 1
chain 145 = 1
chain 40585 = 1
chain 169 = 3
chain 363601 = 3
chain 1454 = 3
chain 871 = 2
chain 45361 = 2
chain 872 = 2
chain 45362 = 2
chain x = 1 + chain (sumFactDigits x)
makeIncreas 1 minnum = [[a]|a<-[minnum..9]]
makeIncreas digits minnum = [a:b|a<-[minnum ..9],b<-makeIncreas (digits-1) a]
p74=
sum[div p6 $countNum a|
a<-tail$makeIncreas 6 1,
let k=digitToN a,
chain k==60
]
where
p6=facts!! 6
sumFactDigits = foldl' (\a b -> a + facts !! b) 0 . explode
factorial n = if n == 0 then 1 else n * factorial (n - 1)
digitToN = foldl' (\a b -> 10*a + b) 0 .dropWhile (==0)
facts = scanl (*) 1 [1..9]
countNum xs=ys
where
ys=product$map (factorial.length)$group xs
problem_74= length[k|k<-[1..9999],chain k==60]+p74
test = print $ [a|a<-tail$makeIncreas 6 0,let k=digitToN a,chain k==60]
Problem 75
Find the number of different lengths of wire can that can form a right angle triangle in only one way.
Solution:
module Main where
import Data.Array.Unboxed (UArray, accumArray, elems)
main :: IO ()
main = print problem_75
limit :: Int
limit = 2 * 10 ^ 6
triangs :: [Int]
triangs = [p | n <- [2 .. 1000], m <- [1 .. n - 1], odd (m + n),
m `gcd` n == 1, let p = 2 * (n ^ 2 + m * n), p <= limit]
problem_75 :: Int
problem_75 = length $ filter (== 1) $ elems $
(\ns -> accumArray (+) 0 (1, limit) [(n, 1) | n <- ns] :: UArray Int Int) $
take limit $ concatMap (\m -> takeWhile (<= limit) [m, 2 * m .. ]) triangs
Problem 76
How many different ways can one hundred be written as a sum of at least two positive integers?
Solution:
Here is a simpler solution: For each n, we create the list of the number of partitions of n whose lowest number is i, for i=1..n. We build up the list of these lists for n=0..100.
build x = (map sum (zipWith drop [0..] x) ++ [1]) : x
problem_76 = (sum $ head $ iterate build [] !! 100) - 1
Problem 77
What is the first value which can be written as the sum of primes in over five thousand different ways?
Solution:
Brute force but still finds the solution in less than one second.
counter = foldl (\without p ->
let (poor,rich) = splitAt p without
with = poor ++
zipWith (+) with rich
in with
) (1 : repeat 0)
problem_77 =
find ((>5000) . (ways !!)) $ [1..]
where
ways = counter $ take 100 primes
Problem 78
Investigating the number of ways in which coins can be separated into piles.
Solution:
import Data.Array
partitions :: Array Int Integer
partitions =
array (0,1000000) $
(0,1) :
[(n,sum [s * partitions ! p|
(s,p) <- zip signs $ parts n])|
n <- [1..1000000]]
where
signs = cycle [1,1,(-1),(-1)]
suite = map penta $ concat [[n,(-n)]|n <- [1..]]
penta n = n*(3*n - 1) `div` 2
parts n = takeWhile (>= 0) [n-x| x <- suite]
problem_78 :: Int
problem_78 =
head $ filter (\x -> (partitions ! x) `mod` 1000000 == 0) [1..]
Problem 79
By analysing a user's login attempts, can you determine the secret numeric passcode?
Solution:
import Data.Char (digitToInt, intToDigit)
import Data.Graph (buildG, topSort)
import Data.List (intersect)
p79 file=
(+0)$read . intersect graphWalk $ usedDigits
where
usedDigits = intersect "0123456789" $ file
edges = concatMap (edgePair . map digitToInt) . words $ file
graphWalk = map intToDigit . topSort . buildG (0, 9) $ edges
edgePair [x, y, z] = [(x, y), (y, z)]
edgePair _ = undefined
problem_79 = do
f<-readFile "keylog.txt"
print $p79 f
Problem 80
Calculating the digital sum of the decimal digits of irrational square roots.
This solution uses binary search to find the square root of a large Integer:
import Data.Char (digitToInt)
intSqrt :: Integer -> Integer
intSqrt n = bsearch 1 n
where
bsearch l u = let m = (l+u) `div` 2
m2 = m^2
in if u <= l
then m
else if m2 < n
then bsearch (m+1) u
else bsearch l m
problem_80 :: Int
problem_80 = sum [f r | a <- [1..100],
let x = a * e,
let r = intSqrt x,
r*r /= x]
where
e = 10^202
f = sum . take 100 . map digitToInt . show