Partibles for composing monads: Difference between revisions
No edit summary |
mNo edit summary |
||
(56 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote"> | |||
Having praised monads to the hilt, let me level one criticism. Monads tend to be an all-or-nothing proposition. If you discover that you need interaction deep within your program, you must rewrite that segment to use a monad. If you discover that you need two sorts of interaction, you tend to make a single monad support both sorts. It seems to me that instead we should be able to move smoothly from no monads (no interactions) to one monad (a single form of interaction) to many monads (several independent forms of interactions). How to achieve this remains a challenge for the future. | |||
<small>[https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3579&rep=rep1&type=pdf How to Declare an Imperative], Philip Wadler.</small> | |||
</div> | |||
<sub> </sub> | |||
Assuming the [[Partible|partible]] types being used are appropriately defined, then: | |||
<haskell> | <haskell> | ||
type M p a = p -> a | |||
unit :: Partible p => a -> M p a | |||
unit x = \ u -> let !_ = part u in x | |||
bind :: Partible p => M p a -> (a -> M p b) -> M p b | |||
m `bind` k = \ u -> let !(u1, u2) = part u in | |||
let !x = m u1 in | |||
let !y = k x u2 in | |||
y | |||
next :: Partible p => M p a -> M p b -> M p b | |||
m `next` w = \ u -> let !(u1, u2) = part u in | |||
let !x = m u1 in | |||
let !y = w u2 in | |||
y | |||
fail :: Partible p => String -> M p a | |||
fail s = \ u -> let !_ = part u in error s | |||
</haskell> | |||
Furthermore: | |||
<haskell> | |||
mfix :: Partible p => (a -> M p a) -> M p a | |||
mfix m = \ u -> yet (\ x -> m x u) | |||
mcommute :: (Partible p1, Partible p2) => M p1 (M p2 a) -> M p2 (M p1 a) | |||
mcommute g = \ v u -> g u v | |||
mcommute' :: (Monad m, Partible p) => m (M p a) -> M p (m a) | |||
mcommute' m = \ v -> liftM ($ v) m | |||
</haskell> | |||
where: | |||
:{| | |||
|<haskell> | |||
yet :: (a -> a) -> a | |||
yet f = f (yet f) | |||
</haskell> | |||
|} | |||
Using partible types to define monadic ones can enable an intermediate approach to the use of effects, in contrast to the ''all-or-nothing proposition'' of only using the monadic interface. In addition, if the definitions for such monadic types are ''visible'' (e.g. as type synonyms), this may also allow the manipulation of control in ways beyond what the monadic interface provides. | |||
=== Composing arrows === | |||
Partible types can also be used to define [[Arrow|arrow]] types: | |||
<haskell> | |||
type A p b c = (p -> b) -> (p -> c) | |||
-- | arr :: Partible p => (b -> c) -> A p b c | ||
arr f = \ c' u -> f $! c' u | |||
both :: Partible p => A p b c -> A p b' c' -> A p (b, b') (c, c') | |||
f' `both` g' = \ c' u -> let !(u1:u2:u3:_) = parts u in | |||
let !(x, x') = c' u1 in | |||
let !y = f' (unit x) u2 in | |||
let !y' = g' (unit x') u3 in | |||
(y, y') | |||
where | |||
unit x u = let !_ = part u in x | |||
</haskell> | </haskell> | ||
(...though most will probably opt for the convenience of the associated [https://hackage.haskell.org/package/base-4.15.0.0/docs/src/Control-Arrow.html#Kleisli <code>Kleisli</code>] type). | |||
=== Composing comonads === | |||
[[Comonad|Comonadic]] types can be defined using partible types as well: | |||
<haskell> | <haskell> | ||
type C p a = (a, p) | |||
extract :: Partible p => C p a -> a | |||
extract (x, u) = let !_ = part u in x | |||
duplicate :: Partible p => C p a -> C p (C p a) | |||
duplicate (x, u) = let !(u1, u2) = part u in | |||
((x, u1), u2) | |||
extend :: Partible p => (C p a -> b) -> C p a -> C p b | |||
extend h (x, u) = let !(u1, u2) = part u in | |||
let !y = h (x, u1) in | |||
(y, u2) | |||
(u1, u2) | |||
</haskell> | </haskell> | ||
---- | |||
See also: | |||
* [[Plainly partible]] | |||
* [[Partible laws]] | |||
* [[Burton-style nondeterminism]] | |||
* [[MonadFix]] | |||
* [[Prelude extensions]] | |||
* [https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/bang-patterns.html Bang patterns] | |||
* [https://gitlab.haskell.org/ghc/ghc/-/issues/19809 GHC ticket 19809: Overhaul ST using ''pseudodatata''] | |||
[[User:Atravers|Atravers]] 04:31, 10 April 2018 (UTC) | |||
[[Category:Arrow]] | |||
[[Category:Monad]] | |||
[[Category:Proposals]] | |||
[[ |
Latest revision as of 08:14, 12 June 2023
Having praised monads to the hilt, let me level one criticism. Monads tend to be an all-or-nothing proposition. If you discover that you need interaction deep within your program, you must rewrite that segment to use a monad. If you discover that you need two sorts of interaction, you tend to make a single monad support both sorts. It seems to me that instead we should be able to move smoothly from no monads (no interactions) to one monad (a single form of interaction) to many monads (several independent forms of interactions). How to achieve this remains a challenge for the future.
How to Declare an Imperative, Philip Wadler.
Assuming the partible types being used are appropriately defined, then:
type M p a = p -> a
unit :: Partible p => a -> M p a
unit x = \ u -> let !_ = part u in x
bind :: Partible p => M p a -> (a -> M p b) -> M p b
m `bind` k = \ u -> let !(u1, u2) = part u in
let !x = m u1 in
let !y = k x u2 in
y
next :: Partible p => M p a -> M p b -> M p b
m `next` w = \ u -> let !(u1, u2) = part u in
let !x = m u1 in
let !y = w u2 in
y
fail :: Partible p => String -> M p a
fail s = \ u -> let !_ = part u in error s
Furthermore:
mfix :: Partible p => (a -> M p a) -> M p a
mfix m = \ u -> yet (\ x -> m x u)
mcommute :: (Partible p1, Partible p2) => M p1 (M p2 a) -> M p2 (M p1 a)
mcommute g = \ v u -> g u v
mcommute' :: (Monad m, Partible p) => m (M p a) -> M p (m a)
mcommute' m = \ v -> liftM ($ v) m
where:
yet :: (a -> a) -> a yet f = f (yet f)
Using partible types to define monadic ones can enable an intermediate approach to the use of effects, in contrast to the all-or-nothing proposition of only using the monadic interface. In addition, if the definitions for such monadic types are visible (e.g. as type synonyms), this may also allow the manipulation of control in ways beyond what the monadic interface provides.
Composing arrows
Partible types can also be used to define arrow types:
type A p b c = (p -> b) -> (p -> c)
arr :: Partible p => (b -> c) -> A p b c
arr f = \ c' u -> f $! c' u
both :: Partible p => A p b c -> A p b' c' -> A p (b, b') (c, c')
f' `both` g' = \ c' u -> let !(u1:u2:u3:_) = parts u in
let !(x, x') = c' u1 in
let !y = f' (unit x) u2 in
let !y' = g' (unit x') u3 in
(y, y')
where
unit x u = let !_ = part u in x
(...though most will probably opt for the convenience of the associated Kleisli
type).
Composing comonads
Comonadic types can be defined using partible types as well:
type C p a = (a, p)
extract :: Partible p => C p a -> a
extract (x, u) = let !_ = part u in x
duplicate :: Partible p => C p a -> C p (C p a)
duplicate (x, u) = let !(u1, u2) = part u in
((x, u1), u2)
extend :: Partible p => (C p a -> b) -> C p a -> C p b
extend h (x, u) = let !(u1, u2) = part u in
let !y = h (x, u1) in
(y, u2)
See also:
- Plainly partible
- Partible laws
- Burton-style nondeterminism
- MonadFix
- Prelude extensions
- Bang patterns
- GHC ticket 19809: Overhaul ST using pseudodatata
Atravers 04:31, 10 April 2018 (UTC)