Concurrency demos/Zeta: Difference between revisions
No edit summary |
KetilMalde (talk | contribs) (added bugfix to mvar impl, and benchmark numbers) |
||
Line 44: | Line 44: | ||
putStrLn ("Starting thread for range " ++ show range) | putStrLn ("Starting thread for range " ++ show range) | ||
mvar <- newEmptyMVar | mvar <- newEmptyMVar | ||
forkIO ( | forkIO (do let zs = zetaRange s range | ||
when (zs==zs) $ putMVar zs) -- we need to deepSeq the list | |||
return mvar | return mvar | ||
</haskell> | </haskell> | ||
Line 95: | Line 96: | ||
== Benchmarks == | == Benchmarks == | ||
Here's a simple script to run the three variation above, with four threads using 1, 2, and 3 OS threads. | |||
<code> | |||
for a in mvar chan strat; do | |||
for n in 1 2 3; do | |||
echo -n $a $n ' '; | |||
/usr/bin/time -f "%Uu %Ss %Ee %PCPU" ./z.$a 4 500000 1:+1 +RTS -N$n > /dev/null; | |||
done; | |||
echo; | |||
done | |||
</code> | |||
Results on a dual Opteron system: | |||
<code> | |||
mvar 1 2.52u 0.06s 0:02.63e 98%CPU | |||
mvar 2 2.69u 0.05s 0:02.10e 130%CPU | |||
mvar 3 2.85u 0.07s 0:02.30e 126%CPU | |||
chan 1 11.75u 4.06s 0:15.91e 99%CPU | |||
chan 2 9.81u 0.05s 0:09.48e 104%CPU | |||
chan 3 10.96u 3.25s 0:12.24e 116%CPU | |||
strat 1 8.82u 0.07s 0:08.93e 99%CPU | |||
strat 2 4.42u 0.06s 0:03.82e 117%CPU | |||
strat 3 5.01u 0.08s 0:04.46e 114%CPU | |||
</code> |
Revision as of 08:39, 15 January 2007
A simple example of parallelism in Haskell
This little piece of code computes an approximation of Riemann's zeta function, balancing the work to be done between N threads.
import Control.Concurrent
import Control.Concurrent.MVar
import Control.Monad
import Data.Complex
import System.Environment
-- Return the list of the terms of the zeta function for the given range.
-- We don't sum the terms here but let the main thread sum the lists returned
-- by all the other threads so as to avoid accumulating rounding imprecisions.
zetaRange :: (Floating a, Integral b) => a -> (b, b) -> [a]
zetaRange s (x,y) = [ fromIntegral n ** (-s) | n <- [x..y] ]
cut :: (Integral a) => (a, a) -> a -> [(a, a)]
cut (x,y) n = (x, x + mine - 1) : cut' (x + mine) size (y - mine)
where
(size, modulo) = y `divMod` n
mine = size + modulo
cut' _ _ 0 = []
cut' x' size' n' = (x', x' + size' - 1) : cut' (x' + size') size' (n' - size')
getParams :: IO (Int, Int, Complex Double)
getParams = do
argv <- getArgs
case argv of
(t:n:s:[]) -> return (read t, read n, read s)
_ -> error "usage: zeta <nthreads> <boundary> <s>"
main :: IO ()
main = do
(t, n, s) <- getParams
childs <- mapM (thread s) (cut (1, n) t)
results <- mapM takeMVar childs
print (sum (concat results))
where
thread s range = do
putStrLn ("Starting thread for range " ++ show range)
mvar <- newEmptyMVar
forkIO (do let zs = zetaRange s range
when (zs==zs) $ putMVar zs) -- we need to deepSeq the list
return mvar
Or using Strategies
Replace the Control.Concurrent...
imports by
import Control.Parallel.Strategies
and replace main by
main :: IO ()
main = do
(t, n, s) <- getParams
let ranges = cut (1, n) t
results = map (zetaRange s) ranges `using` parList rnf
putStr $ unlines [ "Starting thread for range " ++ show r | r <- ranges ]
print (sum (concat results))
Using a Chan instead of MVars
Replace the main function with:
main :: IO ()
main = do
(t, n, s) <- getParams
chan <- newChan
terms <- getChanContents chan
forM_ (cut (1,n) t) $ thread chan s
let wait xs i result
| i >= t = print result -- Done.
| otherwise = case xs of
Nothing : rest -> wait rest (i + 1) result
Just x : rest -> wait rest i (result + x)
_ -> error "missing thread termination marker"
wait terms 0 0
where
thread chan s range = do
putStrLn ("Starting thread for range " ++ show range)
forkIO $ do
mapM_ (writeChan chan . Just) (zetaRange s range)
writeChan chan Nothing
Benchmarks
Here's a simple script to run the three variation above, with four threads using 1, 2, and 3 OS threads.
for a in mvar chan strat; do
for n in 1 2 3; do
echo -n $a $n ' ';
/usr/bin/time -f "%Uu %Ss %Ee %PCPU" ./z.$a 4 500000 1:+1 +RTS -N$n > /dev/null;
done;
echo;
done
Results on a dual Opteron system:
mvar 1 2.52u 0.06s 0:02.63e 98%CPU
mvar 2 2.69u 0.05s 0:02.10e 130%CPU
mvar 3 2.85u 0.07s 0:02.30e 126%CPU
chan 1 11.75u 4.06s 0:15.91e 99%CPU
chan 2 9.81u 0.05s 0:09.48e 104%CPU
chan 3 10.96u 3.25s 0:12.24e 116%CPU
strat 1 8.82u 0.07s 0:08.93e 99%CPU
strat 2 4.42u 0.06s 0:03.82e 117%CPU
strat 3 5.01u 0.08s 0:04.46e 114%CPU