Euler problems/151 to 160: Difference between revisions
No edit summary |
(add problem_156) |
||
Line 109: | Line 109: | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_156 = | digits =reverse.digits' | ||
where | |||
digits' n | |||
|n<10=[n] | |||
|otherwise= y:digits' x | |||
where | |||
(x,y)=divMod n 10 | |||
digitsToNum n=foldl dmm 0 n | |||
where | |||
dmm=(\x y->x*10+y) | |||
countA :: Int -> Integer | |||
countA 0 = 0 | |||
countA k = fromIntegral k * (10^(k-1)) | |||
countFun :: Integer -> Integer -> Integer | |||
countFun _ 0 = 0 | |||
countFun d n = countL ds k | |||
where | |||
ds = digits n | |||
k = length ds - 1 | |||
countL [a] _ | |||
| a < d = 0 | |||
| otherwise = 1 | |||
countL (a:tl) m | |||
| a < d = a*countA m + countL tl (m-1) | |||
| a == d = a*countA m + digitsToNum tl + 1 + countL tl (m-1) | |||
| otherwise = a*countA m + 10^m + countL tl (m-1) | |||
fixedPoints :: Integer -> [Integer] | |||
fixedPoints d | |||
= [a*10^10+b | a <- [0 .. d-1], b <- findFrom 0 (10^10-1)] | |||
where | |||
fun = countFun d | |||
good r = r == fun r | |||
findFrom lo hi | |||
| hi < lo = [] | |||
| good lo = lgs ++ findFrom (last lgs + 2) hi | |||
| good hi = findFrom lo (last hgs - 2) ++ reverse hgs | |||
| h1 < l1 = [] | |||
| l1 == h1 = if good l1 then [l1] else [] | |||
| m0 == m1 = findFrom l1 (head mgs - 2) ++ mgs | |||
++ findFrom (last mgs + 2) h1 | |||
| m0 < m1 = findFrom l1 (m0-1) ++ findFrom (goUp h1 m1) h1 | |||
| otherwise = findFrom l1 (goDown l1 m1) ++ findFrom (m0+1) h1 | |||
where | |||
l1 = goUp hi lo | |||
h1 = goDown l1 hi | |||
goUp bd k | |||
| k < k1 && k < bd = goUp bd k1 | |||
| otherwise = k | |||
where | |||
k1 = fun k | |||
goDown bd k | |||
| k1 < k && bd < k = goDown bd k1 | |||
| otherwise = k | |||
where | |||
k1 = fun k | |||
m0 = (l1 + h1) `div` 2 | |||
m1 = fun m0 | |||
lgs = takeWhile good [lo .. hi] | |||
hgs = takeWhile good [hi,hi-1 .. lo] | |||
mgs = reverse (takeWhile good [m0,m0-1 .. l1]) | |||
++ takeWhile good [m0+1 .. h1] | |||
problem_156=sum[sum $fixedPoints a|a<-[1..9]] | |||
</haskell> | </haskell> | ||
Revision as of 03:01, 23 January 2008
Problem 151
Paper sheets of standard sizes: an expected-value problem.
Solution:
problem_151 = undefined
Problem 152
Writing 1/2 as a sum of inverse squares
Note that if p is an odd prime, the sum of inverse squares of all terms divisible by p must have reduced denominator not divisible by p.
Solution:
import Data.Ratio
import Data.List
invSq n = 1 % (n * n)
sumInvSq = sum . map invSq
subsets (x:xs) = let s = subsets xs in s ++ map (x :) s
subsets _ = [[]]
primes = 2 : 3 : 7 : [p | p <- [11, 13..79],
all (\q -> p `mod` q /= 0) [3, 5, 7]]
-- All subsets whose sum of inverse squares,
-- when added to x, does not contain a factor of p
pfree s x p = [(y, t) | t <- subsets s, let y = x + sumInvSq t,
denominator y `mod` p /= 0]
-- Verify that we need not consider terms divisible by 11, or by any
-- prime greater than 13. Nor need we consider any term divisible
-- by 25, 27, 32, or 49.
verify = all (\p -> null $ tail $ pfree [p, 2*p..85] 0 p) $
11 : dropWhile (< 17) primes ++ [25, 27, 32, 49]
-- All pairs (x, s) where x is a rational number whose reduced
-- denominator is not divisible by any prime greater than 3;
-- and s is all sets of numbers up to 80 divisible
-- by a prime greater than 3, whose sum of inverse squares is x.
only23 = foldl f [(0, [[]])] [13, 7, 5]
where
f a p = collect $ [(y, u ++ v) | (x, s) <- a,
(y, v) <- pfree (terms p) x p,
u <- s]
terms p = [n * p | n <- [1..80`div`p],
all (\q -> n `mod` q /= 0) $
11 : takeWhile (>= p) [13, 7, 5]
]
collect = map (\z -> (fst $ head z, map snd z)) .
groupBy fstEq . sortBy cmpFst
fstEq (x, _) (y, _) = x == y
cmpFst (x, _) (y, _) = compare x y
-- All subsets (of an ordered set) whose sum of inverse squares is x
findInvSq x y = f x $ zip3 y (map invSq y) (map sumInvSq $ init $ tails y)
where
f 0 _ = [[]]
f x ((n, r, s):ns)
| r > x = f x ns
| s < x = []
| otherwise = map (n :) (f (x - r) ns) ++ f x ns
f _ _ = []
-- All numbers up to 80 that are divisible only by the primes
-- 2 and 3 and are not divisible by 32 or 27.
all23 = [n | a <- [0..4], b <- [0..2], let n = 2^a * 3^b, n <= 80]
solutions = if verify
then [sort $ u ++ v | (x, s) <- only23,
u <- findInvSq (1%2 - x) all23,
v <- s]
else undefined
problem_152 = length solutions
Problem 153
Investigating Gaussian Integers
Solution:
problem_153 = undefined
Problem 154
Exploring Pascal's pyramid.
Solution:
problem_154 = undefined
Problem 155
Counting Capacitor Circuits.
Solution:
problem_155 = undefined
Problem 156
Counting Digits
Solution:
digits =reverse.digits'
where
digits' n
|n<10=[n]
|otherwise= y:digits' x
where
(x,y)=divMod n 10
digitsToNum n=foldl dmm 0 n
where
dmm=(\x y->x*10+y)
countA :: Int -> Integer
countA 0 = 0
countA k = fromIntegral k * (10^(k-1))
countFun :: Integer -> Integer -> Integer
countFun _ 0 = 0
countFun d n = countL ds k
where
ds = digits n
k = length ds - 1
countL [a] _
| a < d = 0
| otherwise = 1
countL (a:tl) m
| a < d = a*countA m + countL tl (m-1)
| a == d = a*countA m + digitsToNum tl + 1 + countL tl (m-1)
| otherwise = a*countA m + 10^m + countL tl (m-1)
fixedPoints :: Integer -> [Integer]
fixedPoints d
= [a*10^10+b | a <- [0 .. d-1], b <- findFrom 0 (10^10-1)]
where
fun = countFun d
good r = r == fun r
findFrom lo hi
| hi < lo = []
| good lo = lgs ++ findFrom (last lgs + 2) hi
| good hi = findFrom lo (last hgs - 2) ++ reverse hgs
| h1 < l1 = []
| l1 == h1 = if good l1 then [l1] else []
| m0 == m1 = findFrom l1 (head mgs - 2) ++ mgs
++ findFrom (last mgs + 2) h1
| m0 < m1 = findFrom l1 (m0-1) ++ findFrom (goUp h1 m1) h1
| otherwise = findFrom l1 (goDown l1 m1) ++ findFrom (m0+1) h1
where
l1 = goUp hi lo
h1 = goDown l1 hi
goUp bd k
| k < k1 && k < bd = goUp bd k1
| otherwise = k
where
k1 = fun k
goDown bd k
| k1 < k && bd < k = goDown bd k1
| otherwise = k
where
k1 = fun k
m0 = (l1 + h1) `div` 2
m1 = fun m0
lgs = takeWhile good [lo .. hi]
hgs = takeWhile good [hi,hi-1 .. lo]
mgs = reverse (takeWhile good [m0,m0-1 .. l1])
++ takeWhile good [m0+1 .. h1]
problem_156=sum[sum $fixedPoints a|a<-[1..9]]
Problem 157
Solving the diophantine equation 1/a+1/b= p/10n
Solution:
problem_157 = undefined
Problem 158
Exploring strings for which only one character comes lexicographically after its neighbour to the left.
Solution:
problem_158 = undefined
Problem 159
Digital root sums of factorisations.
Solution:
problem_159 = undefined
Problem 160
Factorial trailing digits
We use the following two facts:
Fact 1: (2^(d + 4*5^(d-1)) - 2^d) `mod` 10^d == 0
Fact 2: product [n | n <- [0..10^d], gcd n 10 == 1] `mod` 10^d == 1
We really only need these two facts for the special case of
d == 5
, and we can verify that directly by
evaluating the above two Haskell expressions.
More generally:
Fact 1 follows from the fact that the group of invertible elements
of the ring of integers modulo 5^d
has
4*5^(d-1)
elements.
Fact 2 follows from the fact that the group of invertible elements
of the ring of integers modulo 10^d
is isomorphic to the product
of a cyclic group of order 2 and another cyclic group.
Solution:
problem_160 = trailingFactorialDigits 5 (10^12)
trailingFactorialDigits d n = twos `times` odds
where
base = 10 ^ d
x `times` y = (x * y) `mod` base
multiply = foldl' times 1
x `toPower` k = multiply $ genericReplicate n x
e = facFactors 2 n - facFactors 5 n
twos
| e <= d = 2 `toPower` e
| otherwise = 2 `toPower` (d + (e - d) `mod` (4 * 5 ^ (d - 1)))
odds = multiply [odd | a <- takeWhile (<= n) $ iterate (* 2) 1,
b <- takeWhile (<= n) $ iterate (* 5) a,
odd <- [3, 5 .. n `div` b `mod` base],
odd `mod` 5 /= 0]
-- The number of factors of the prime p in n!
facFactors p = sum . zipWith (*) (iterate (\x -> p * x + 1) 1) .
tail . radix p
-- The digits of n in base b representation
radix p = map snd . takeWhile (/= (0, 0)) .
iterate ((`divMod` p) . fst) . (`divMod` p)
it have another fast way to do this .
Solution:
import Data.List
mulMod :: Integral a => a -> a -> a -> a
mulMod a b c= (b * c) `rem` a
squareMod :: Integral a => a -> a -> a
squareMod a b = (b * b) `rem` a
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a
pow' _ _ _ 0 = 1
pow' mul sq x' n' = f x' n' 1
where
f x n y
| n == 1 = x `mul` y
| r == 0 = f x2 q y
| otherwise = f x2 q (x `mul` y)
where
(q,r) = quotRem n 2
x2 = sq x
powMod :: Integral a => a -> a -> a -> a
powMod m = pow' (mulMod m) (squareMod m)
productMod =foldl (mulMod (10^5)) 1
hFacial 0=1
hFacial a
|gcd a 5==1=mod (a*hFacial(a-1)) (5^5)
|otherwise=hFacial(a-1)
fastFacial a= hFacial $mod a 6250
numPrime x p=takeWhile(>0) [div x (p^a)|a<-[1..]]
p160 x=mulMod t5 a b
where
t5=10^5
lst=numPrime x 5
a=powMod t5 1563 $mod c 2500
b=productMod c6
c=sum lst
c6=map fastFacial $x:lst
problem_160 = p160 (10^12)